English Language Proficiency and Core Content Standards: Linking Documents for the Instruction of English Language Learners **Science** | Kindergarten
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|---|--|--|--| | Kindergarten Discipline 1: Science Processes | | | | | | | Standard: Inquiry Process (IP) Natural curiosity about the world around | Collect realia
needed for
scientific
experiments
following teacher
directions.
(Collecting leaves) | Conduct
scientific
experiments using
realia. Following
teacher directions.
(Classify leaves
according to size,
shape and color) | Build hypotheses
based descriptions of
scientific
observations.
(Why do leaves
change color?) | Match explanations with evidence of the findings. (Some leaves fall to the ground in the fall, and others do not.) | Conduct scientific
inquiry using many
resources. (Looking at
informational books,
videos, web sites, field
trips) | | Standard:
Inquiry Analysis
and
Communication
(IA) | Observe scientific experiments. (Discuss differences in leaves) | Chart scientific
experiments.
(Classify leaves
according to size,
shape and color) | Generate list of
questions
(Why do leaves
change color?) | Discuss an explanation of findings. (Some trees lose leaves and others trees don't. Why?) | Present findings to class using a chart or table of leaf differences | | Standard:
Reflection and
Social
Implications
(RS) | Draw various
leaves and circle
differences | Construct chart
of classified items.
(Construct chart of
classified leaves.) | Partner share
about learning through
classification | Write an explanation of findings. (Some trees lose leaves and others trees don't. Why?) | Make a scientific
book using many
resources. (Use
information from
books, videos, web
sites, field trips) | | Kindergarten Discipline 2: Physical Science | | | | | | | Standard: Force and Motion (FM) Position, Gravity, Force | Place various objects on a mat— Repeat where objects are in relation to other objects—teacher-led sharing (Position) ("The box is in front of the ball; The house is behind the fire station, etc.) Follow directions for moving objects. (e.g"move the | Follow multiple step directions for moving objects. (e.g. "Lift the book and put it on the bottom shelf of the bookcase.")Describe where object is now using place words—"The book is at the bottom of the bookcase." | Compare movement of objects (e.g., "Which goes fastest, skateboard, car, or train?") Use comparison words: Fast, faster, fastest Slow, slower, slowest | Predict movement of objects (e.g., "Tell what happens when you drop a ball.") | Demonstrate that size affects motion of object by using a cone, cylinder and sphere of various sizes and weights. State findings. "The red ball moves faster than the red cone because it is round." | | Kindergarten
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|---|---|--| | | chair, lift the book") | | | | | | Kindergarten
Discipline 3:
Life Science | | | | | | | Standard: Organization of Living Things (OL) Living and Non- living Things | Explore animal and plant parts (e.g. skin, feathers, fur, roots leaves stems)Observe plant growth. Draw pictures of observations. | Use illustrations to discuss differences between plants and animalsConstruct a t- chart use the headings animals/plants; cut and place pictures under proper headings. | Read aloud informational books to gather data for a shared writing on plants and animalsLabel pictures with names of animal and plant parts (root, stem, flower, tail, paws, fur) | Classify/sort plants
using pictures/ drawings
under headings: trees,
flowers, vegetables | Write a few
sentences on
characteristics of a
familiar plant/animal | | Kindergarten
Discipline 4:
Earth Science | | | | | | | Standard: Solid Earth (SE) Air, water, soil | Construct posters from magazine pictures of our Earth— including rocks, | Search for words
in big books or trade
books associated
with Earth—air,
water, soil, plants, | Distinguish things
that help make plants
grow—sun, water, soil
from things that are
not good—pollution, | Write a few sentences about our earth | Construct a class Earth book, label items, and present to another class orally | | ,, | minerals, water, sky, etc. Name objects. | etc. | chemicals, etc. Sequence activities associated with growing a plant | | | | 1 st Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|---|---|---| | Grade 1 Discipline 1: Science Processes | | | | | | | Standard: Inquiry Process (IP) Natural curiosity about the world around | Collect realia
needed for
scientific
experiments
following teacher
directions. (simple
tools, objects for
measuring) | Conduct
scientific
investigations
using realia.
Following teacher
directions. | Generate list of
questions
(How can we
measure rain?) | Construct a chart
of simple tools and
their uses | Conduct
scientific inquiry
using many
resources. (Looking
at informational
books, videos, web
sites, field trips) | | Standard: Inquiry Analysis and Communication (IA) | Observe scientific experimentsRepeat experiment several times for accuracyDiscuss differences among simple tools | Chart scientific
experiments
(Classify simple
tools according to
size, shape, etc) | Build hypotheses
based descriptions
of scientific
observations
(Why does the
wheel turn in the
opposite direction?) | Discuss an explanation of findings. (Some tools are better at some tasks. Why?) | Research various
tools used inside and
outside the house | | Standard: Reflection and Social Implications (RS) | Draw various
tools and label | Construct chart
of classified items.
(Construct chart
of simple tools) | Partner share
about learning
through
classification | Write an explanation of findings. | Make a scientific
book useful tools
(Use information
from books, videos,
web sites, field trips) | | Grade 1 Discipline 2: Physical Science | | | | | | | Standard:
Properties of
Matter
(PM) | Sort objects
according to size
shape and color.
Discuss rationale
for sorting. | Match pictures
of materials or
textures with their
sources.
(tree/paper, | Describe objects
by their textures
(e.g. sandpaper is
rough)
Investigate | Match objects
according to texture,
size, etc. Construct
a chart
Make a checklist | Evaluate the usefulness of goods and productsExplore and explain a common | | Physical Properties | Make a | cotton/clothes) | simple magnets | of things to look for in | household appliance. | | 1 st Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---
---|---|---|---|--| | States of Matter
Magnets | collage of objects made of different materials and textures (paper, cotton, or wool). Observe forms of matter (e.g. ice melting, steam rising, water). Observe and experiment with the push and pull of magnets | Classify pictures of solid (ice), liquid (water) and gas (steam) according to their forms of matterMatch pictures of appliances and their namesExperiment with the 3 forms of matter using an ice cube, steam and water Describe observations | Read aloud- simple information books on magnetsDraw a before and after picture of matterDiscuss how jello changes from a liquid to a solid. | matter to be able to say if it is a solid, liquid or gasExplore using magnets and magnetic and non-magnetic materials: present findings orally | (toaster, blender)Investigate and construct simple machines such as a lever, inclined plane, balance beamExplain orally or in writing how a specific machine works | | Grade 1 Discipline 3: Life Science | | | | | | | Standard: Organization of Living Things (OL) Life Requirements Life Cycles | Explore various animals and plants in picture books—Observe plant growth. Draw pictures of observations. What do plants need to grow? | Use illustrations to discuss the similarities differences between the needs of plants and animals | Read aloud
informational books
to gather data for a
shared writing on
plants and animals | Put in proper sequence pictures of the life cycle of an animal or plantLabel stages—egg, young, adult or egg, larva, pupa, adultWrite a few sentences on the life cycle of a familiar plant/animals | Draw and label life cycle of a plantIllustrate a life cycle of a favorite animal and present orally | | Standard: Heredity (HE) Observable Characteristics | Show picture of mature and immature plants/animals—learn names and match name cards with pictures. (e.g. | Play Act animal
actions, such as
horse gallop,
lumbering of
elephant | Write or dictate
a sentence about
animals and their
offspring. | Create a minibook
about favorite animal
and their babies.
Classify pictures of
animals under
adult/young. | Classify characteristics of an animal that are passed on from parents to young (shape of beak, number of legs, body | | 1 st Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|--|--|--|--| | | dogs/puppies,
beans/seedlings) | | | | Construct a chart and present orally | | Grade 1 Discipline 4: Earth Science | | | | | | | Standard: Earth Systems (ES) Solar Energy Weather Weather Measurement | Observe sunlight coming into the classroom Make a class weather chart to keep track of the weather for 2 weeksDraw pictures to tell the about the observed weather conditionsMake and discuss weather predictions for the 3rd week based on the data gathered. | List questions about the earth and the sunWrite a class big book about how the weather affects us, plants and animals. | Write frame sentences about the weather on sentences strips. If it is (raining), then I can/can't (play outside). Students complete the sentences | Write a class "Important Book" starting with the sun. Model after Margaret Wise Brown's "The Most Important Book"List, describe and compare the four seasons— temperature, precipitation, cloud cover, and windConstruct a 4-door foldable book—one page for each season | Construct a windsock. Explain its function in describing weather conditionsList and describe benefits of "good" weatherList and describe benefits of "foul" weather. | | Standard: Solid Earth (SE) Earth Materials | Construct posters from magazine pictures of our Earth— including rocks, minerals, water, sky, etc. Name objects. | Search for
words in big books
or trade books
associated with
Earth—air, water,
soil, plants, etc. | Distinguish things that help make plants grow— sun, water, soil from things that are not good—pollution, chemicals, etcSequence activities associated with growing a plant | Write a few
sentences about our
earth, including
natural materials that
help plant and animal
life (rocks, minerals,
soils, water, etc) | Construct a class Earth book, label items, and present to another class orally | | 2nd Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|---|---|---| | Grade 2 Discipline 1: Science Processes | | | | | | | Standard: Inquiry Process (IP) Natural curiosity about the world around | Observe a plot
of land outside
classroom—sketch
scenery, label
objects | Conduct
scientific
investigations
using realia.
Following teacher
directions. | Generate list of
questions about
observations
(Where do the birds
live? Why are some
plants red?) | Learn to read a
thermometer
Construct a
thermometer | Conduct
scientific inquiry
using many
resources. (Looking
at informational
books, videos, web
sites, field trips) | | Standard: Inquiry Analysis and Communication (IA) | Discuss differences in various observations of same plot of land over time | Chart
observations using
an accordion book | Describe plot of land and what is happening using senses: I see, I hear, I smell, etc. | Write one sentence for 5 observations. | Research answer
to a question using
books, internet,
experts | | Standard: Reflection and Social Implications (RS) | Collect various
everyday tools.
Describe and
state purpose | Construct chart of classified items | Partner share
about learning
through
classification | Write an
explanation of the
technology of tools
used every day | Make a scientific
book useful tools
(Use information
from books, videos,
web sites, field trips) | | Grade 2 Discipline 2: Physical Science | | | | | | | Standard: Properties of Matter (PM) Physical Properties Material Composition | Sort objects according to color, size, shape, color, texture, hardnessDiscuss rationale for sorting | Match pictures
of materials or
textures with their
sources.
(tree/paper,
cotton/clothes)
Classify
pictures or objects | Describe objects by their textures (e.g. sandpaper is rough)Compare and discuss the various weights of objects. Ex: "This ball is | Match objects
according to texture,
size, etc. Construct
a chart | Evaluate the usefulness of various measuring tools. Write/illustrate about single substances and mixtures in science | | 2nd Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|---
--|--|---| | | Make a collage of objects made of different materials and textures (paper, cotton, or wool)Experiment with various objects that sink or float Discuss/Illustra te observation. | as single substances (ice, copper, sugar, salt) or mixtures (salt and pepper, mixed fruit). Measure various objects using rulers meter sticks, measuring cups, spoons. State: "This book is centimeters long." "This is a cup of milk." | heavier than this
book because it
weighs 20 more
ounces." | | journals using a T-Chart. | | Grade 2 Discipline 3: Life Science | | | | | | | Standard: Organization of Living Things (OL) Life Requirements Life Cycles | Explore various plants in picture books—Observe plant growth. Chart observations. What do plants need to grow? | Use illustrations and sequence life cycle of a plant— seed, plant, flower, and fruitDraw and label life cycle of a plant | Read aloud informational books to gather data for a shared writing on particular plants. | Write a few
sentences on the life
cycle of a familiar
plant—buddy write | Illustrate a life
cycle of a favorite
plant or flower and
present orally | | Standard: Heredity (HE) Observable Characteristics | Show picture of mature and immature plants— learn names and match name cards with pictures. (beans/seedlings) | Classify characteristics of plants according to leaf shape, flower type, color, size, where found | Write or dictate
a sentence about
plants as they grow | Create a minibook
about favorite plant or
flower | Construct a class
book of leaves or
flowers. Label and
write one or two
sentences on each
page | | Grade 2 Discipline 4: Earth Science | | | | | | | 2nd Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|---|--|--|--| | Standard: Solid Earth (SE) Surface Changes | Construct a relief map— include the major land forms of mountains, plains, plateaus, valleys, hillsLabel each land form | Search for
examples of land
forms in big
books, trade
books, or
magazines | Distinguish characteristics of each landform in comparison to the rest. What makes a hill a hill instead of a mountain? Use comparison words: bigger, flatter, etc. | Write a few
sentences about each
land form. Make a flip
book | Construct a class
landform book,
including
descriptions and
examples of each
landform and
present to another
class orally | | Standard: Fluid Earth (FE) Water Water Movement | Find pictures of various water sources (wells, springs, lakes, rivers, oceans). Sort according to sizeConstruct posters from magazine pictures showing water or water being used to help people. (e.g. water used for baths, drinking water) | Search for
words in big
books, trade
books, or
magazines
associated with
water (such as
rain, ice, hot,
river) iceberg) | Distinguish activities that use water from those that don't, based on written phrases and pictures (such as "brush hair" or "take a bath")Classify activities that you do with water from those you do in water (such as brush teeth or go swimming) | Sequence sentences to show how to do activities that involve water (such as cooking rice, cleaning floors)Draw or find pictures showing various states of water: solid, liquid, or gasDescribe pictures using describing words like freezing, cold, hard, melting) | Read various non- fiction books on the water cycleCompare versions—report out | | 3rd Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|--|---|--|--| | Grade 3 Discipline 1: Science Processes | | | | | | | Standard: Inquiry Process (IP) Natural curiosity about the world around | Draw
scientific
pictures and
label them (such
as life cycles) | Conduct
scientific
investigations
using realia.
Following teacher
directions. | Generate list of questions about observationsUse question words such as who, what, when, where, why, what if | Maintain a science
journal | Maintain a
science journal with
explanations, and
label illustrations | | Standard: Inquiry Analysis and Communication (IA) | With a partner, investigate an interesting science question (gravity, speed, etc.) and discuss possibilitiesUse question starters (what, where, why, who, when, what if) | Chart
observations using
a T list | Explain T-list to
another team
investigating the
same question
Discuss findings
and combine into
one team chart | Write one
paragraph about
investigation findings | Research answers
to question using
books, internet,
experts and add to
writing | | Standard: Reflection and Social Implications (RS) | Listen attentively to a text read aloud about a multicultural scientist that has made our lives better (Arab, Hispanic, African- American) | Read and
discuss about
other inventors
and scientists—
take notes | Collect information about one scientist of interest—work with a partner | Write and illustrate one page about the inventor | Make a class book
about various
multicultural
scientists and their
contributions
Present orally to
another class | | Grade 3 Discipline 2: Physical Science | | | | | | | 3rd Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|--|---|---| | Standard: Force and Motion (FM) Gravity Force Speed | Play tug of war—use push and pull to explain forceExperiment with gravity (ball dropping, twirling a ball around in an orbit)—use words like gravity, heavy, light, orbit, Earth, push, pull, law | Read about Galileo or Newton—discuss experiments they did and duplicate one in class | Demonstrate the force of air leaving a balloon or a toy car on a rampuse these words—push, pull, strength, mass, move, speed, distanceSequence experiment in writing | Make an alphabet
book of force words.
Illustrate and write
one sentence for each
force word. | Share book with 1st or 2nd graders. Explain forceCreate a double- bubble thinking map to compare and contrast the forces of push and pull | | Standard: Energy (EN) Forms Light Sound | Experience different kinds of light and light sources— flashlight, candle, blacklight, shadow, sunExperience different sounds— identify sourceFollow teacher's directions on various experiments with light and sound | Sort pictures into light or sound and List-Group-LabelExperiment with light making shadows and "bending" light in water—use words like straight, bend, shadow, travel, pass throughExperiment with different vibrations and chart—use words like fast, faster, slow, slower, vibration, pitch | Write experiment with
light or sound in scientific method formSummarize information from informational book on light or sound using post-it summary technique | Practice a musical instrument—explain different pitches to another studentMake a thesaurus class book of different words to describe sound (loud—earsplitting, harsh; soft-quiet, peaceful) | Create a musical play about pitch and vibration using student- created instruments | | Standard:
Properties of
Matter
(PM) | Match
statements of
science facts with
illustrations (ex:
Metal gets hotter | Discuss fact or opinion on light energy statements (ex: Light from the sun is reflects | Experiment with heating various materials with various light sources—discover | Organize experiment information in chart form and summarize findings | Make a Conducts Heat and Reflects Heat quiz for classmates using realia | | 3rd Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|---|--|--|--| | Conducive and
Reflective
Properties | than wood when
the sun heats it) | off objects and enters our eyes—fact or opinion? Blue light is shiner than white light—fact or opinion? | which materials get
hotter
Retell
experiment | | | | Grade 3 Discipline 3: Life Science | | | | | | | Standard: Organization of Living Things (OL) Structures and Functions Classification | List-Group-
Label Sort pictures of plant parts and animal parts into two categories and label parts. Use words like roots, leaves, stems, backbone, skin, shell, etcLabel parts. | Discuss why pictures are classified in each category—use observable physical characteristicsRetell function of each item using full sentences: "The plant uses the roots to get water from the ground." | Display pictures of various plants and animals and have students pick one to research more informationProvide leveled informational books on each plant and animal | Students orally report to the class information on their plant or animal, including information about functions of plant and animal parts: ex: "This is a paw. The honey bear uses it to scratch the tree to get bugs to eat." | Compose a poem or song about chosen plant or animal using function words and parts—ex: "A horse is an animala horse, of course." | | Standard: Evolution (EV) Environmental Adaptation | List 10 living things—5animals, 5 plantsSort pictures by characteristics and record on chart paper—note shape, size, color, body covers, etcSay word in a sentence e.g. "This bear is large."Connect visuals with words (red bird) | Choose one animal or plant and write one or two sentences on how that animal or plant is able to live in their natural environment: ex: "The ant eater has a long nose to help scoop up ants to eat." | Use THIEVES technique to skim informational books about Environmental Adaptations of certain plants and animals in Michigan | Use 3-1-2 Strategy form to summarize information on a Michigan plant or animal that has adapted to their environment | Create a class Environmental Adaptation book on Michigan plants and animalsShare with grade 2 students | | 3rd Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|--|--|---| | Grade 3 Discipline 4: Earth Science | | | | | | | Standard: Earth Systems (ES) Natural Resources Human Impact | Watch and listen attentively to a video clip about pollution and make a poster to illustrate the harm that polluting water can causeFind and cut out articles and pictures depicting recyclingSequence descriptive sentences and pictures to illustrate the recycling process | List natural resources that the class uses in one day (water, vegetables, sunlight, paper from tree, etc)Recycle paper in school for one week and calculate how much is savedReport findings | In teams, Classify natural resources into renewable or non-renewable resourcesCompare choices with another teamDefend why item is placed in each category | Research the 1989 Exxon Valdez oil spill in Price William Sound off the coast of AlaskaReport out findings | Research things that people can do to help the environment—recycling, reusing, restoring resourcesCreate a mock newscast to influence others to recycle, reuse, renew | | Standard: Solid Earth (SE) Earth Materials Surface Changes Using Earth Materials | Sort different types of earth materials: place in 4 categories, then 3, then 2Say: "This belongs here because" and reasons for placing items in various categories (such as "because it is hard/wet/soft." | Sort various rocks into categories; make a t-chartGenerate questions about rocks | Discuss and illustrateRock Sayings: Your head is as hard as a rock. I am between a rock and a hard place. She has a heart of stone. Build your house upon a rock, and not shifting sand. | Discuss and investigate various changes in the Earth's surface—erosion, volcanoes, glaciers, landslides, earthquakes | Construct a "Using Earth's Materials" display and orally report about each item and its man-made use: ex—clay is useful to make bricks; trees can be made into lumber to build housesWrite a 3 paragraph essay about the usefulness of one earth material | | 4th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|--|--|---|---| | Grade 4 Discipline 1: Science Processes | | | | | | | Standard: Inquiry Process (IP) Natural curiosity about the world around | Draw
scientific
pictures and
label them (such
as solids, liquids,
gasses) | Conduct
scientific
investigations
using realia.
Following teacher
directions. | Generate list of questions about observationsUse question words such as who, what, when, where, why, what if | Maintain a science
journal | Maintain a
science journal with
explanations, and
label illustrations | | Standard: Inquiry Analysis and Communication (IA) | With a partner, investigate an interesting science topic (electrical circuits, fossils, survival, etc.) and discuss | Chart
observations using
a T list | Explain T-list to
another team
investigating the
same question
Discuss findings
and combine into
one team chart | Write one
paragraph about
investigation findings | Research answers
to question using
books, internet,
experts and add to
writing | | Standard:
Reflection and
Social
Implications
(RS) | Build a model (electrical circuit, magnet, food web, etc.)Sequence directions | Follow 3-4
step directions
and then restate
directions for
another student to
follow | Develop
questions about
model | Read about
electricity and
inventors | Create a book of inventions, listing inventor, inventions and how each invention contributes to society | | Grade 4 Discipline 2: Physical Science | | | | | | | Standard: Energy (EN) Forms Energy and Temperature Electrical Circuits | Experiment with heat, electricity, magnetsMake a collage
depicting examples of heat and using | Experiment with and learn to read different types of thermometers— use hot, hotter, hottest; cool, cooler, coolest | Build a circuit with a single battery, wire, and bulb. Light a lamp. Use 2 batteries with both + signs in the same direction. Now reverse one of | Experiment and discover how electricity and magnetism are related; use a double-bubble thinking map to explain relationship | Research electricity, narrow topic, and write a 3 paragraph summary on electricity | | 4th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|---|--|---| | | electricityLabel heat and their sources | | the batteriesDiscuss what happens | Make an electrode magnetic. Try again to pick up paper clipsExplain what happens | | | Standard: Properties of Matter (PM) Physical Properties States of Matter Magnets Conducive and Reflective Properties | Experiment with different types of magnetsMake a t-chart: magnetic materials/non- magnetic materials | Group and classify various materials (matter)—use 3-4 categories. Label each item and the categories | Look through magazines, and web sites for pictures of solids, liquids, gassesClassify pictures under correct headingDescribe objects using size, shape, feel words | Measure various objects by weight, volumeChart and label results | Experiment with dry ice to explore the properties of matterWrite observations in a science journal and share with another teamWrite an essay about global warming, its causes and effects | | Standard: Changes in Matter (CM) Changes in state | Observe, discuss, and identify properties of water: freezing, boiling, and evaporatingFind and cut out examples in magazinesIllustrate and distinguish between a solid, liquid, and gas; Say "This is a (solid,liquid,gas)." or "This rock is a solid." | Make a concept map of forms of waterDiscuss each vocabulary word and find examples of eachMake a tree map: matter solid liquid gas | Observe the effects of energy in the water cycleExperiment with water evaporation, condensation, and freezingWrite sentences using stem to show physical changes in matter: "If youthen you will, but you" Ex: "If you melt ice cubes, then you will have a puddle, but you will still have water." | Discuss, write, illustrate observations in science journals | Create a song about changes in matter—use the terms solid, liquid, gas, heating, cooling, change, state | | 4th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|--|--|--|--| | Grade 4 Discipline 3: Life Science | | | | | | | Standard: Organization of Living Things (OL) Life Requirements | Differentiate between healthy and unhealthy foods after watching and listening to a demonstrationMake posters using magazine pictures. Label pictures and say "This is a healthy food." Or "This is unhealthy." | Read "Gregory the Terrible Eater" byMake a menu for a healthy breakfast, lunch, or dinnerCompose a list of "healthy" requirements for plants and other animals to grow | Experiment with various plant settings—one without light, one without water, etcRecord observations in science journal | Retell experiment in proper sequence to class | Construct a large class collage of living things and their requirements for lifeWrite a short essay on personal environmental responsibility | | Standard:
Evolution
(EV)
Survival | Explore various animals, insects, etc.—identify and chart differences in color, leg length, size, wing sizeCopy or construct sentences comparing differences by using words like stronger, longer, brighter, etc. "This tree is tall. The oak tree is taller." | Predict which
animal will survive
given a list of
characteristics
compared to other
animals and state
why | Make a multi- flow thinking map with the classChart causes for the extinction of endangered species, such as the dodo bird or duckbill platypusUse the following terms in the thinking map: extinction, animals, survival, advantage, size, strength, reproduction | Read informational books about various environments and the animals that thrive thereSummarize information on a poster | Who am I? Make a guessing game from posters | | Standard:
Ecosystems
(EC) | Sequence a
food chain using
picture cards
Say one | Match pictures
of animals to their
habitats | Discuss various
food chains and
food webs and
choose one to | Evaluate which
animal you would like
to be, if you were an
animal, and tell why | Research about
one natural disaster
(Katrina, volcano
eruption, etc.) and | | 4th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|--|---|--|---| | Interactions
Changed
Environment Effects | sentence about
each card using
sequence words
such as first,
next, then. | Choose one habitat and research animals, plants, insects that live there and how they help each other use these words in sentences: interact, food, shelter, helpful, harmful | present to classmatesWrite 3 sentences for each food chain, using key words | you would survive | its effect on one food chain—which animals died, which animals moved to a new location Report out to class | | Grade 4 Discipline 4: Earth Science | | | | | | | Standard: Earth in Space and Time (ST) Characteristics of Objects in the Sky Patterns of Objects in the Sky Fossils | Look at pictures of the constellationsWatch and listen to media about how they got their namesDraw, color, and label pictures of constellationsSay "This is the Big Dipper. It looks like" | Create scientific models based on illustrations and teacher directions: "Show how the moon goes around (rotates) the earth." "Show how the earth moves around the sun."Read the Informizing book "Millions of Years Ago" by Steve MolineDiscuss differences between the land a million years ago and now | Use a double-bubble thinking map to compare and contrast the sizes of objects in the sky—"The sun is bigger than the biggest planet."Create a double-bubble thinking map comparing life forms today and those found in fossils from years ago | Make a Space book of terms with illustrations and one sentence with each—orbit, spin, year, cycle, moon, movement, sun, sky, day/night, etcLocate places on a world map where recent fossils have been foundWrite a mini-report about one fossil |
Create a non- fiction book about object in the sky or creature that lived long ago. Include content page, index, headings, diagrams, maps, pictures, labels, etcShare with kindergarten class | | 5th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|---|---|--|---| | Grade 5 Discipline 1: Science Processes | | | | | | | Standard: Inquiry Process (IP) Natural curiosity about the world around | Draw
scientific
pictures and
label them (such
as gravity, animal
systems, seasons,
the solar system | Conduct
scientific
investigations
using realia.
Following teacher
directions. | Generate list of questions about observationsUse question words such as who, what, when, where, why, what if | Maintain a science
journal | Maintain a
science journal with
explanations, and
label illustrations | | Standard: Inquiry Analysis and Communication (IA) | With a partner, investigate an interesting science topic (solar system, gravity, speed, genetics, etc.) using pictures. Choose one picture and make one sentence to describe it. | Chart
observations using
a T list | Explain T-list to another team investigating the same question Discuss findings and combine into one team chart | Write one
paragraph about
investigation findings | Research answers
to question using
books, internet,
experts and add to
writing | | Standard: Reflection and Social Implications (RS) Grade 5 | Build a model
(solar system,
animal systems,
race track, etc.)
Sequence
directions | Follow 3-4
step directions
and then restate
directions for
another student to
follow | Develop
questions about
model | Read about
electricity and
inventors | Create a book of inventions, listing inventor, inventions and how each invention contributes to society | | Discipline 2: Physical Science Standard: Force and Motion | Experiment
with friction,
gravity, air | Experiment
with and learn to
read different | Build a circuit
with a single
battery, wire, and | Experiment and discover how electricity and | Research
electricity, narrow
topic, and write a 3 | | 5th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|---|---|---| | (FM) Force Interactions Force Speed | resistance,
magnetsMake a race
track for model
carsSay and label
actions: motion,
same direction,
opposite direction, | types of
thermometers—
use hot, hotter,
hottest; cool,
cooler, coolest | bulb. Light a lamp. Use 2 batteries with both + signs in the same direction. Now reverse one of the batteriesDiscuss what happens | magnetism are related; use a double-bubble thinking map to explain relationshipMake an electrode magnetic. Try again to pick up paper clipsExplain what happens | paragraph summary
on electricity | | Grade 5 Discipline 3: Life Science | | | | | | | Standard: Organization of Living Things (OL) Animal Systems | Differentiate between different animal systems— digestive, circulatory, respiratory, skeletal—using picturesSort into categoriesLabel each system | | Experiment with various plant settings—one without light, one without water, etcRecord observations in science journal | Retell experiment
in proper sequence to
class | Construct a large class collage— orally demonstrate each animal system in actionWrite a short essay on animal systems and how they work together to do specific things— | | Standard: Heredity (HE) Inherited and Acquired Traits | Explore various animals, insects, etc.—identify and chart differences in color, leg length, size, wing sizeName each animal and compare certain traits using words like stronger, longer, brighter, etc. "The tiger's | Match which animal would live in a given environment using a list of characteristics and state why—Ex: "The camel would live in the desert because of the shape of his feet and capacity to store water." | Make a double-bubble thinking map, charting the differences between inherited and acquired traits Inherited Acquired | Read informational books about various environments and the animals that live there—focus on inherited and acquired traitsSummarize information on a poster | Debate which is more important for humans and why— inherited traits or acquired traits from the environment | | 5th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|--|---|--| | | claws are sharper
than the rabbit's
claws." | | | | | | Standard: Evolution (EV) Species Adaptation and Survival Relationships Among Organisms | Match pictures of animals to their habitats Sort pictures of organisms that are anatomically similar to recreate the classification of organisms Make a tree map of findings | Choose one habitat and research animals, plants, insects that live there and how they thrive. Use these words in sentences: adapt, instinct, learn, habit, traits | Create a double-bubble thinking map comparing life forms today and those found in fossils from years ago—include environmental changes, food, size, learned habits | Read informational books about how man has adapted to his environment through time and predict how he will have to adapt 50 years from now given elevated levels of pollution, overcrowding, shortage of land and water Report out orally | Research about one natural disaster (volcano eruption, asteroid impact, tsunami, etc.) that has led to a species extinctionReport out to class | | Grade 5 Discipline 4: Earth Science | | | | | | | Standard: Earth Systems (ES) Seasons | View and listen attentively to presentation or read-aloud about seasons. Demonstrate understanding of why there are different seasons, using pictures and models of the earth and sunListen to and | Create scientific
models based on
illustrations and
teacher directions:
"Show how the
earth tilts on its
axis as it goes
around (revolves)
the sun." | Make a Time book—include illustrations, sentences, and brief explanations of 1 year—one revolution of the Earth around the sun 1 month 1 week 1 day 1 hour | Write a mini-
report about your
favorite season and
why it is your favorite.
Include the sun's
warming (or not),
climate,
environmental
changes, activities
done, length | Write a song or
poem about seasons
(use Jim Walters
song as a model) | | 5th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|---
--|--|---| | | sing "Seeds and
Seasons" from
Science Through
Song by Jim
Walters | | 1 minute
1 second | | | | Standard: Earth in Space and Time (E. ST) Solar System Solar System Motion | Create a model of the solar system using clay to represent different planets and other objects in the solar system (asteroids, moons, etcDiscuss how this model is different/similar to the real solar system | Experiment with different phases of the moon using a light bulb and Styrofoam balls. Go through the 8 phases of the moon, naming each phase. Use these words: reflected light, orbit, observe, position | Make a scale drawing of the planet Saturn. Use the Earth to indicate the scale of the planet: "Saturn's diameter is about 9 times as big as the Earth's diameter." Students choose another planet and determine the approximate scale to the EarthMatch pictures of the planets with their names. Place in order from the sun and report out orally. | Make a t-chart: Fact Opinion Write information on sentence strips—ex: The earth is round. The earth is the only planet with water. The tides are caused by the gravity pull of the moon. Students place strips in one column and orally defend their choice. | Class project— assign one of the eight planets to each team. Students research planet in informational books, or websites: www.windowstotheu niverse.com Record information in science journals. Make a model of the planet and report out information to class | | 6th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|---|--|--| | Grade 6 Discipline 1: Science Processes | | | | | | | Standard: Inquiry Process (IP) Observing, Questioning, Investigating, Developing Solutions | Draw scientific pictures and label them (such as forms of energy—light, sound, electrical, or producers, consumers, decomposers) | Conduct
scientific
investigations
using realia.
Following teacher
directions. | Generate list of
questions about
observations
Use question
words such as who,
what, when, where,
why, what if | Maintain a science
journal | Maintain a
science journal with
explanations, and
label illustrations | | Standard: Inquiry Analysis and Communication (IA) | With a partner, investigate an interesting science topic (electrical energy, ecosystems, preypredators, etc.) and discussDraw a poster and label topics with simple sentences | Chart
observations using
a T list | Explain T-list to
another team
investigating the
same question
Discuss findings
and combine into
one team chart | Write one
paragraph about
investigation findings | Research answers
to question using
books, internet,
experts and add to
writing | | Standard: Reflection and Social Implications (RS) | Construct a
thinking map or
ecosystem
model
(producers/consu
mers,
predator/prey,
etc. | Follow 3-4
step directions
and then restate
construction
directions for
another student to
follow | Develop
questions about
model | Read about
ecosystems and rocks | Create a book of
rocks, listing types,
where found, and
many uses of each
kind of rock | | 6th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|--|---|---|---| | Grade 6 Discipline 2: Physical Science | | | | | | | Standard: Energy (EN) Kinetic and Potential Energy Energy Transfer | Experiment with heat, motion and food energy— rubber band stretching, rolling ball—noting the differences between kinetic— in motion—and potential (ball on a ledge)Observe or view a film about radiation, conduction of electricity, or convection ovensLabel kinds of energy on a picture collage | Construct a circle thinking map defining energy and the different kinds— potential, kinetic Draw a picture or act out how energy is transferred without loss or gain of energy | Write 3 sentences about kinetic and potential energy using examples from lifeDiscuss what happens | Explain how potential energy and kinetic are related through real-life examples | Research radiation or convection ovens, and write a 3 paragraph summary on its uses to help mankind | | Standard: Changes in Matter (CM) Changes in State | Observe and identify how matter (ex: water) changes through heating and coolingUse sequence words to describe change. (First, the water is cold. Next, the water is boiling. Finally, the water is cooling down. | Discuss differences between physical and chemical changes with many examples from nature (ex: water freezing into ice (physical); iron and oxygen form rust (chemical) | Experiment with water evaporation, condensation, and freezingWrite sentences using stem to show both physical and chemical changes in matter: "If youthen you will, but you" Ex: "If you melt ice cubes, then you will have a puddle, but you will still have water." | Discuss, write, illustrate observations in science journals | Listen to "Science through Song" by Jim Walters Create a song or poem about changes in matter—use the terms motion, changes, atoms, molecules, structure, conserve, mass, arrange | | 6th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|--|--|---|---| | Grade 6 Discipline 3: Life Science | | | | | | | Standard: Organization of Living Things (OL) Producers, Consumers, and Decomposers | Sort pictures of living things into producers and consumersMake a chart using magazine pictures of producers, consumers, and decomposers | Act out a scene from nature depicting a producer, consumer, and a decomposer— "I am a potato plant. I produce tomatoes for my farmer. " "I am a farmer. I eat the potatoes from the garden but throw away the skin into the compost" | Construct a tree map of the classification for all life forms into: Life forms producers decomposers | Appraise which
you would like to be—
a consumer, producer,
or a decomposer and
state orally why | Write a short
essay on Producers,
Consumers, and
Decomposers and
Energy | | Standard: Ecosystems (EC) Interactions of Organisms Relationships of Organisms Biotic and Abiotic Factors Environmental Impact of Organisms | View a short
film about
ecosystems
in the
Great Lakes –
Say one
sentence about
each | Match pictures of predators with their prey Choose one predator from the Great Lakes and research; use these words in sentences: predator, prey, producer, consumer, adapt, benefit, interdependency | Discuss how human beings sometimes upset ecosystems because of urban expansion—ex: plight of the coyoteCompile a list of species near extinction because of overpopulation. State: "This is extinct because | Compile a vocabulary book of Ecosystem terms—listing word, illustration, sentence | Write 3 paragraphs about how global warming is affecting the ecosystems of the Great Lakes region | | Grade 6 Discipline 4: Earth Science | | | | | | | Standard:
Solid Earth
(SE) | Observe and
compare soil
samples. Work
with a partner | View video of plate tectonics. Construct a puzzle model of | Make a poster of
the rock cycle with
labels identifying
process of forming | Write a paragraph with a main idea with supporting details showing | Explain the importance of the magnetic field related to scientific | | Soil
Rock Formation | to describe them with simple | panagea" using simple shapes of | igneous,
metamorphic, and | evidence of the theory of plate tectonics | discoveries and inventions | | 6th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|---|---|--|---| | Plate Tectonics
Magnetic Field of
Earth | adjectives | continentsDescribe movement using direction words (north, northwest, etc.) | sedimentary rocksPresent to others with a partner. | | | | Standard: Earth in Space and Time (ST) Fossils Geologic Time | View a video clip about stars and why stars are different colors. Make simple statements about a star and its color. ("This star looks blue because"Look at pictures of the constellationsIllustrate how constellations got their names | Create scientific models based on illustrations and teacher directions: "Show how the moon goes around (rotates) the earth." "Show how the earth moves around the sun."Read with a partner the book "Millions of Years Ago" by Steve MolineDiscuss differences between the land a million years ago and now | Use a double-bubble thinking map to compare and contrast the sizes of objects in the sky—"The sun is bigger than the biggest planet."Create a double-bubble thinking map comparing life forms today and those found in fossils from years ago | Make a Space book of terms with illustrations and one sentence with each—orbit, spin, year, cycle, moon, movement, sun, sky, day/night, etcLocate places on a world map where recent fossils have been foundWrite a mini-report about one fossil | Create a non- fiction book about object in the sky or creature that lived long ago. Include content page, index, headings, diagrams, maps, pictures, labels, etcShare with kindergarten class | | 7th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|---|---|--|---| | Grade 7 Discipline 1: Science Processes | | | | | | | Standard: Inquiry Process (IP) Observing, Questioning, Investigating, Developing Solutions | Draw scientific pictures and label them (such as forms of energy—solar, waves, chemical), cell formations, the water cycle | Conduct
scientific
investigations
using realia.
Following teacher
directions. | Generate list of
questions about
observations
Use question
words such as who,
what, when, where,
why, what if | Maintain a science
journal | Maintain a
science journal with
explanations, and
label illustrations | | Standard: Inquiry Analysis and Communication (IA) | With a partner, investigate an interesting science topic (chemical energy, cells, photosynthesis. weather and climate, etc.)Draw and color a picture to demonstrate learning | Chart
observations using
a T list | Explain T-list to
another team
investigating the
same question
Discuss findings
and combine into
one team chart | Write one
paragraph about
investigation findings | Research answers
to question using
books, internet,
experts and add to
writing | | Standard: Reflection and Social Implications (RS) | Construct a
thinking map or
matter model
(elements and
compounds, water
cycle, etc.) | Follow 3-4
step directions
and then restate
construction
directions for
another student to
follow | Develop
questions about
model | Read about
weather and climate,
the water cycle, solar
energy | Create a book of weather, listing types, where found, the many consequences of weather, and man's solutions to capturing and taming weather | | 7th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|---|---|---|---| | Grade 7 Discipline 2: Physical Science | | | | | | | Standard: Energy (EN) Waves and Energy Energy Transfer Solar Energy Effects | Experiment with sound and light wavesBring in different objects (e.g. nails, tuning forks, drum) Make predictions about the sound that each object will make when struckDiscuss the length of the vibrationsChart on paper and make comparative statements ("This sound is louder than that one.") | Construct a circle thinking map defining the different kinds of wavessound, seismic, water— add a representative picture of each kindDraw a picture or act out how light energy is transferred to chemical energy through the process of photosynthesisListen to the "Energy" song from Science through Song by Jim Walters | Experiment with a "slinky" to discover how waves moveRead or view a video about nuclear energy, specific to nuclear reactions in the sunCompare the difference between "tiny fraction" of light energy and catastrophic accidents with nuclear energy | In science journals,
make a list of "I
wonders" about solar
energy | Research about one of the "I wonders" about solar energy using an encyclopedia, science leveled books, or the internetWrite 3 paragraphs about findings, including uses of solar energy | | Standard: Properties of Matter (PM) Chemical Properties Elements and Compounds | Gather common substances from around the classroom and houseClassify substances by boiling point, density, color, conductivity and reactivity. Use descriptive words: | Construct a chart of the Periodic Table, labeling each element with name and symbol. Color code element familiesExplore real examples of common elements: calcium,
magnesium, | Read information about the history of the Periodic TableVisit website: www.periodictable.c omMake a flow chart or time table of the history of the Periodic TableOrally present chart to class | Use Periodic Table to discover similarities and differences in elementsConstruct a double-bubble thinking map to show similarities and differences between two elements | Research and write an informational book about one element from the Periodic Table: include illustrations, properties, history, uses, charts, etcReport out to class | | 7th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---------------------------------|---|---|------------------------------------|-------------------------------------|---------------------------| | | "This metal
conducts
electricity, but
this plastic tube
does not conduct
electricity." | copper, nickel, zinc, tin, iodine, lead, gold, hydrogen, chlorine, etcState one sentence about each element and its uses and identify its place on the periodic table | | | | | Changes in Matter (CM) Chemical Changes Changes Changes Composition, gas formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to terms formation, color and temperature change using water and other chemicals (ex: steel wool added to temperature change) | 7th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|--|--|--|-------------------------------------|---| | song "Molecular Motion Dance" from the Science through Song." CD by Jim WaltersPhysically dance out the motions described Grade 7 | Changes in Matter (CM) Chemical Changes | discuss, and identify how matter (ex: water) changes through heating and coolingListen to the song "Molecular Motion Dance" from the Science through Song" CD by Jim WaltersPhysically dance out the motions | differences
between physical
and chemical
changes with
many examples
from nature (ex:
water freezing into
ice (physical); iron
and oxygen form | evaporation, gas formation, color and temperature change using water and other chemicals (ex: steel wool added to water, steel wool added to a vinegar and bleach mixture)Write one or two sentences describing the substance before and after the chemical change: Before "The steel wool is silver in color and rough in texture. It stays together when rubbed." After— "The steel wool is tan, rusty in color and is rough in texture but it crumbles when | illustrate
observations in | Create a song or
poem about changes
in matter—use the
terms formation,
chemical changes,
number of atoms,
same, different,
mass, products, | | 7th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|--|---|--| | Discipline 3:
Life Science | | | | | | | Standard: Organization of Living Things (OL) Cell Functions Growth and Development Photosynthesis | Construct a tree thinking map of systems: Cells →tissues →organs →systemsIllustrate and label chart of blood, muscle, or nerve system in the human body | Give a short oral summary of chart, including cell parts: nucleus, cell wall, cell membrane and specialized functions of cells (respiration, synthesis, mitosis, meiosis)Listen to "Cell Membrane Mambo" by Jim | Make a 3-D model or act out the three functions of cells—how they acquire and use energy, grow and reproduceDemonstrate that cell growth is an increase in the numbers of cells, not change in size—draw and label examples. | Listen attentively and take notes on a media presentation of photosynthesisVisit website for an interactive display of cells: www.cellsalive.comSynthesize information and report orally to class 3 fascinating
facts | Construct a double-bubble thinking map illustrating the differences between cellular respiration and photosynthesisExplain differences in a three paragraph essayCompose a poem, play, or Reader's Theater | | Standard: Heredity (HE) Reproduction | Discuss characteristics that you have inherited from your mother or father (eye color, hair color, height, etc.)Use words like: "I am taller than my father." "I have my mother's brown eyes, but black hair like my father." | Discuss the characteristics of all living systems and how they are passed on through generationsDiscuss what life would be like if life forms did not reproduce | Read about
examples of sexual
and asexual
reproduction | Construct a double-bubble thinking map comparing and contrasting the advantages and disadvantages of sexual vs. asexual reproduction Report out findings | Choose one animal and trace characteristics through 100 years. Record changes and if they were due to heredity or environmental adaptation | | Grade 7 Discipline 4: Earth Science | | | | | | | Standard:
Earth Systems
(ES) | Use a picture
or diagram to
label and identify
the different parts | Discuss causes
and effects of
human activities
on plants and | Read about
global warming and
the increase of
hurricanes | Keep a weather journal. Use the following table Date 9/18 | Research global
warming and its
effect on climate and
weatherWrite | | Solar Energy | of the water | animals. Use | Construct a chart | 7/10 | and illustrate a | | 7th Grade
Science Discipline | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | Interm | gh
nediate
evel 3 | Proficient
ELP Level 4 | |---------------------------------------|---|--|--|---|---|---| | Human | cycle. Include the | these words: | of the number of | Time | 10:00 | pamphlet on ways to | | Consequences
Weather and | warming of the sun in the cycle. | extinction, variety, climate change, | hurricanes in the United States over | Temperatu
re | 82 | prevent further damage to our | | Climate
Water Cycle | Read "A Drop of | endangered | the last 5 years— | Wind
direction | NW | planet | | water cycle | Water" by Dr.
Wageh Saad or | species, acid rain,
survival | include location, size, date, etc. | Barometric | | | | | similar book | Surviva. | size, date, etc. | Pressure
Precipitatio | rainy | | | | about the water | | | n type
Humidity | high | | | | cycle
Listen to | | | How I felt | Muggy, | | | | "Water Cycle" on | | | | droopy | | | | the Science
through Song CD | | | | | | | | by Jim Walters | | | | | | | Standard: Fluid Earth (FE) Atmosphere | Demonstrate information about the atmosphere using magazine photos, internet pictures, drawings, objects to represent gasses, etc. Use sentence frames—"This photo/object shows" Use these words: nitrogen, oxygen, mixture, water vapor, gases | Illustrate composition of the atmosphere at 3 different elevations— Temperature decreases as altitude Increases—show on a thermometer and by sceneryReport out illustrations | Read leveled
books about Earth's
atmosphere, the
"greenhouse effect",
weather in different
parts of the world | Using a complete this map complete atmosphere different electsReport of information | anking
are
es at 3
evations.
es and | Research "Greenhouse effect" Construct a brochure about the information gathered and how people can lessen the effects of the greenhouse effect | #### High School Earth Science Essentials Michigan Science Linking Document to English Language Proficiency Levels | High School—
Earth Science
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|---|---|--|--| | Standard E1:
Inquiry,
Reflection, and
Social
Implications | | | | | | | Standard E1.1: Scientific Inquiry Questioning, Evaluating, Investigating, Identifying Patterns Describing Reasons | Draw
scientific
pictures and
label them (such
as atmosphere,
rocks, renewable
energy,
greenhouse
effect, landforms,
etc.) | Conduct
scientific
investigations
using realia.
Following teacher
directions. | Generate list of questions about observationsUse question words such as who, what, when, where, why, what if | Maintain a science
journal | Maintain a
science journal with
explanations, and
label illustrations | | | With a partner, investigate an interesting science topic (greenhouse effect, weather and climate, carbon dating, etc.). Choose one picture to label and describe with two prepared sentences. | Chart
observations using
a T list | Explain T-list to another team investigating the same question Discuss findings and combine into one team chart | Write one paragraph about investigation findings | Research answers
to question using
books, internet,
experts and add to
writing | | Standard E1.2: Scientific Reflection and Social Implications Critiquing Identifying Personal | Construct a
thinking map or
matter model
(landforms, types
of rocks, solar
system, etc.) | Follow 3-4
step directions
and then restate
construction
directions for
another student to
follow | Develop "I
Wonder"
questions about
model ("I wonder if
we will discover
another kind of
landform.") | Read about
weather and climate,
renewable energy, the
"greenhouse effect" | Create a book of
weather, listing
types, where found,
the many
consequences of
weather, and man's
solutions to | | High School—
Earth Science
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|---|--|--| | and Social Issues Accessing Information Discussing Evaluating Careers in Science Fields | | | | | capturing and taming weather | | Standard E2:
Earth Systems | | | | | | | Standard E 2.1: Earth Systems Overview Geosphere Atmosphere Hydrosphere Biosphere | Draw or construct a model of the Earth as a system with interacting components: a gyroscope model or gear model where the atmosphere is represented by one gear or link, the geosphere by another and the biosphere by another, all interlinked. State: "The Earth is a closed system of matter." | Label each part of the model, stating "This represents the geosphere which is the crust, mantle and core of the Earth." This part represents the atmosphere which is the air surrounding Earth." This part represents the biosphere which is all the living parts of Earth, including plants and animals." | Write 3 sentences about each component of the Earth, using words like: interact, movement, form, change | Compile a vocabulary book of Earth System terms— listing word, illustration, sentence describing each of the four major interacting components | Choose one of the interacting components of Earth's systems and explain orally and in writing why it is the most important one to humans and what we must do to preserve and conserveReport out to classmates. | | Standard E 2.2: | Sort pictures | Show | What do you use | Appraise which | Research one | |
Energy in Earth | of energy forms | illustrations, | for everyday | form of energy form | renewable source of | | High School—
Earth Science
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|--|---|---|--| | Systems Renewable and Non-renewable sources of energy | into renewable or non-renewable sources | real life examples, and demonstrate these heat transfer methods: Conduction Convection Radiation | living?—list and chart: Energy Origin Uses | your family uses
most—renewable or
non-renewable and
state orally why | energy and write a
short essay on
advantages for your
family to use this
form of energy | | Standard E2.3: Biogeochemical Cycles Carbon | Collect pictures and real objects of things that contain carbonSort into the different carbon forms (solid like in a rock, gas like in carbon dioxide, life like in animals, etc.) | Select pictures that show carbon forms that are beneficial and carbon forms that are harmful to humansOrally defend your choices | Illustrate and write 3 sentences what life on earth would be like without carbon. Explain why | Research one – deforestation, carbon dioxide from fossil fuels, rain forestsWrite a paragraph about why it is important to humans or why it is harmful | Write a letter to
a state
representative or
senator stating why
we need more fuel
efficient or electric
cars | | Standard E2.4: Resources and Human Impacts on Earth Systems Costs and benefits of renewable and non-renewable sources of energy Ozone depletion | List all the sources of energy in your own house—ex: electricity, gas, wood, propane, etc. Decide which is the most efficient and write/say one sentence to give a reason why. ("Our refrigerator is efficient because it is two years old." | Find out where your main source of energy to heat and cool your house comes from (gas company, electric company) and where they get the fuelLook at your home heating bill and determine the cost per kilowatt hourCompare with classmates and make a bar graph. | sources of energy, costs, benefits and whether source is good or bad for the Earth Source cost benefit | Choose one human activity (deforestation, air pollution, water pollution, fossil fuel use, etc.) that is the most detrimental to the Earth—defend your choice, and how it has impacted negatively on the landscape, air, quality of life, etc. Report out to classmates | Research one recently new renewable energy source. Include why it is cost effective and beneficial for Michigan—possible sources are wind energy and wave energy | | High School—
Earth Science
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|--|--|--| | Standard E3:
Solid Earth | | | | | | | Standard E3.1: Advanced Rock Cycle Rock cycle and plate tectonics | Collect various rocks from outside school and houseArrange according to type: igneous, metamorphic, and sedimentary | Chart rock types and whether influenced by plate tectonics or climate Rock influenced by Igneous Metamor, Sediment. | Write descriptive sentences about each type of rock. Include how they can change from one type to the other (by cooling and crystallization, weathering and erosion, sedimentation and lithification, etc) | Research the most
common rocks in
Michigan—what kind,
and why they are
common to Michigan | With a partner, write illustrate, and demonstrate the rock cycle and how it relates to plate tectonics | | Standard E3.2: Interior of the Earth Crust, mantle Inner and outer cores Magnetic field of the earth Oceanic and continental crust | Build a model of the earth (from clay, Styrofoam, etc.) and label with key vocabulary—core, mantle, crust. (Website for great paper models of the Earth: www.usgs.gov/ed ucation/learnweb/ ice. | Talk about crust in relation to "the crust of the bread, the crust on a bowl of soup after it has cooled in relation to the crust of the Earth—both are a thin layerDiscuss the Earth's liquid core similar to the boiling soup. It also contains iron and generates the Earth's magnetic field. | Experiment with a bar magnet to experience a "magnetic field"— place iron filings on an overhead. Watch as the filings are attracted to the magnetic poles. Explain to a partnerView and discuss a video on the Earth's inner and outer core and the magnetic field of the Earth http://education.gsf c.nasa.gov | Partners demonstrate Primary (P) and secondary (S) seismic waves by using a slinky using a push-pull movement (along the slinky to another person (P wave) and an up- down movement (S wave) that moves through rocksExplain to your partner how this is like the seismic waves on Earth. Scientists can find out what the interior of the earth is made up of by the wave patterns. | Create a 3D image of Earth's crustshowing high mountains (thicker and less dense crust) and the ocean's thinner and more dense crustExperience the weight, smell, and feel differences between basalt and granite stoneReport out the differences in terms of density and weightExplain the difference between oceanic and | | High School—
Earth Science
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|--|--|--| | | | | | | continental crust
using these words—
crust, dense, basalt
(oceanic), granite
(continental) | | Standard E3.3: Plate Tectonics Theory Features and processes that occur Plate boundaries Direction and rate of movement | Demonstrate plate tectonics using two stacks of paper plates suddenly pushed together—some flip out, others create a "mountain", while others create a split—like what happens in an earthquake | Demonstrate and explain
shift- one stack of paper plates colored brown on a table (continental crust) and paper plates colored blue (oceanic crust) spread all over the table. Shake the table to represent earth movement: shows sea floor spreading, mid- ocean ridges, mountain ranges, etc. | Experiment with acetate sheets melting and cooling—relate this increased density experience to plate tectonics | Construct a Pangaea flip book showing the continental drift throughout time on Earth from millions of years ago to the present configuration of continents. Report out with a partner, while flipping the pages—"This is the Earth 180 million years ago. It shows that" | Research the Marianas Trench (Earth's deepest trench) or Alfred Wegener (continental drift theory)Write an essay, explaining the significance of the place or the person in man's understanding of the Earth | | Standard E3.4: Earthquakes and Volcanoes Distribution of earthquakes and volcanoes Effects Elastic rebound theory | Use a graphic organizer to compare earthquakes and volcanoes, detailing the differences and how they are the same (destruction)Write and say | Read about earthquakes and volcano eruptions from the last 5 yearsLocate their positions on a globe or mapReport out their distribution. "There are more | Make a glossary
(including an
illustration and a
sentence) of the
following terms:
earthquake.
Volcano, eruption,
fault, continental
drift, magnitude,
Richter scale, plate
tectonics, plate | Read about one recent earthquake and report out size, duration, human cost and material costs | Using the website www.earthquake.usg s.gov research earthquakes in the US over a 5 year period: 1. Damage 2. Deaths 3. Largest by state | | High School—
Earth Science
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|--|--|--| | | one sentence
about each. ("The
earthquake and
the volcano are
the same/are
different
because" | earthquakes on then on This is because of the plate boundaries." | boundary,
seismicity, seismic,
seismograph | | 4. Largest overall 5. Magnitude of 7.0+Present findings in interesting ways using visual aids. Include explanation of plate tectonics and their motions. | | Standard E4: Fluid Earth | | | | | | | Standard E4.1: Hydrogeology Surface water Ground water Water quality | Collect pictures of various fresh water scenes Label the water resourcesPoint and say how they are alike and different using pictures or a graphic organizer: lakes, rivers, wetlands, glaciers, ground water, etc. | Make a model of an aquifer using coffee filters, modeling clay and water. Explain how an aquifer works in real life. | Diagram the % of freshwater on Earth in comparison to salt water. Tell where we get fresh water and why it has diminished over the years. | Use a world map and label it with the 20 river systems of the worldResearch and collect data on 1 or 2 interesting river systemsResearch one of the Great Lakes and report out how pollution has effected it | Research the Rouge River and give an oral presentation including illustrations, uses, and how it has changed over the years (water quality) | | Standard E4.2: Oceans and Climate Currents Global and regional climate | View a video or map showing ocean currents on the surface and deep water currentsCompare the differences using a map, gestures, and simple | Read an article
and discuss how
scientists are
capturing the
ocean's waves to
produce energy
(October 2008
Popular Science) | Construct a vocabulary book, including illustrations, personal definitions and a sentence for each term: water current, prevailing winds, Coriolis effect, temperature | Experiment with throwing a ball from the center of a moving merry-go-round—demonstrates the Coriolis effectResearch how the Coriolis effect prompts airlines, weapons deployment, and | Research the
Great Lakes and how
Michigan climate is
influenced by these
large lakes. Report
out in essay form. | | High School—
Earth Science
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|--|---|---|---| | | sentences. ("This current moves faster than that one.") | | basin, climate
zones, boundary
currents,
thermohaline
circulation,
evaporation,
precipitation | other activities to
adjust their
calculations. Report
out orally | | | Standard E4.3: Severe Weather Thunderstorms Tornadoes Hurricanes Floods Waves Droughts Weather safety | Use newspaper, internet and magazine pictures to chart time and places of hurricanes, tornadoes, floods, tidal waves, and droughts around the worldConstruct and label a chart | Keep a weather journal. Use the following table: Date 10/15 Time 10:00 am Temp. 54° Wind Dir. NW Barometric Pressure Precipitation drizzle Amount ½" Humidity | Read Wild Weather leveled books with a partnerWrite 3 sentences describing each kind of severe weather— where they usually occur, what happens, how it sounds, etc. | Research safety rules for each severe weatherWrite a list of things (in priority order) you would do if you were caught outside in severe weather | Write a newspaper article describing the damage of Hurricane Ike, or a local tornado—include material damage and impact to local government services, electrical and water services | | Standard E5
The Earth in
Space and Time | | | | | | | Standard E5.1: The Earth in Space Position and Motion Scale, Structure and Age of the universe | View a video
clip about the
universe (Carl
Sagan, NASA) | Construct a scale model of the universe (cardboard, balls, paper, etc). Show our solar system in relation to the whole universe and earth in relation to the other planets and the sun | List questions
about the universe—
use who, what,
when, where, why,
how, what if | Read various
scientific articles,
books, magazines
about the universe
and report out
interesting facts and
pictures | Research one question about the universe using articles, websites, videosCompose an interactive presentation on the topic | | High School—
Earth Science
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|---|--|---|---| | Standard E5.2: The Sun Solar activities Auroras Power grid disturbances Nuclear fusion | Sort pictures of sun activities into sunspot cycle, solar flares, solar windShow similarities to cycle, flares, wind | View videos on solar activities (ex: "Frequency"— disruption of radio communication, and auroras, etc.)List phenomena shown (auroras, solar flares, etc.) | Investigate www.nasa.gov -The Sun (illustrations, articles, videos, etc.)Report out 3 interesting facts | Illustrate and write a fiction
piece on what life on Earth would be like without the Sun | Research nuclear fusion: what it is, what it can do Take a stand—Is nuclear power the answer to the energy crisis? | | Standard E5.3: Earth History and Geologic Time Age of our solar system Radioactive decay Events in Earth's history Index fossils | View video on
the formation of
our solar system
www.windowsucar
.edu
Sort pictures
into a time
sequence | Construct a
time line of
Earth's history—
include
illustrations, what
happened, where
oxygen formed,
man came into
being, ice age | Explore outside on a "archeological dig" for rocks, fossils and bring back samples to the classroomGuesstimate age of rock or fossil | Read leveled books about the creation of our solar system, the geological times of earth, etcReport out interesting facts | Explore radioactive decay and elements and how man uses them for good (dating rocks, medicine, etcReport out information in a creative way (demonstration, video, poster) | | Standard E5.4:
Climate Change
Greenhouse effect
Emissions
Global temperature | View videos on
the "greenhouse
effect" and global
warming
With a
partner, identify
and list causes
Resource:
www.pbs.org
Report out
interesting facts
using visual
supports | Survey classmates— "How can we lessen the greenhouse effect in this school?"Create a list and prioritize which can be easily accomplished in a year | Construct a visual glossary of terms—include illustration, sentence, definition, symbol, uses, and rate as good or bad for mankind: Water vapor Carbon dioxide Methane Nitrous oxide Ozone Volcanic eruptions Sunlight Meteorite impacts | Make a graph showing the rise in global temperature in relation to the rise in carbon dioxide from 1858-2008 Make a cause/effect chart Cause Effect Warmer oceans algae growth Changing climate zones | Write an essay
on what students
can do to "green"
this planet | ## High School Biology Essentials Michigan Science Linking Document to English Language Proficiency Levels | High School—
Biology
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|---|---|---| | Standard B1:
Inquiry,
Reflection, and
Social
Implications | | | | | | | Standard B1.1: Scientific Inquiry Questioning, Evaluating, Investigating, Identifying Patterns Describing Reasons | Draw
scientific
pictures and
label them (such
as atmosphere,
DNA,
photosynthesis,
evolution, etc.) | Conduct
scientific
investigations
using realia.
Following teacher
directions. | Generate list of
questions about
observations
Use question
words such as who,
what, when, where,
why, what if | Maintain a science
journal | Maintain a
science journal with
explanations, and
label illustrations | | | With a partner, investigate an interesting science topic (ecosystems, genetics, DNA, evolution, etc.) and discuss | Chart
observations using
a T list | Explain T-list to
another team
investigating the
same question
Discuss findings
and combine into
one team chart | Write one paragraph about investigation findings | Research answers
to question using
books, internet,
experts and add to
writing | | Standard B1.2: Scientific Reflection and Social Implications Critiquing Identifying Personal and Social Issues Accessing Information Discussing Evaluating Careers in Science Fields | Construct a
thinking map or
DNA model
(photosynthesis
process, cell
growth and
development,
etc.) | Follow 3-4
step directions
and then restate
construction
directions for
another student to
follow | Develop "I
Wonder"
questions about
model ("I wonder if
we will discover
another kind of
energy.") | Read about
atmosphere, DNA,
photosynthesis,
evolution, etc.) | Create a book
about
photosynthesis, or
genetics and
investigate career
fields related to
them | | High School—
Biology
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|---|---|---| | Standard B2: Organization and Development of Living Systems | | | | | | | Standard B 2.1: Transformation of Matter and Energy in Cells Transforming energy Photosynthesis Cell division, growth and development | Observe what it means to "transform"— demonstrate with concrete objects: transforming a piece of paper into a crane or hat; transforming a piece of wood into a figureListen to "Cell Membrane Mambo" by Jim Walters explaining cell respiration, etc. through song | Construct a chart of energy flow from the sun to plants, animals, humans, etcGive a short oral summary of chart using these words: sun, plants, photosynthesis, energy, transform, etcDemonstrate cell respiration by breathing hard on a pane of glass | Use a 3-D model or act out the three functions of cells—how they acquire and use energy, grow and reproduceDemonstrate that cell growth is an increase in the numbers of cells, not change of size—draw and label examples, compose one statement, etc. | Listen attentively and take notes on a media presentation about photosynthesisVisit website for interactive display of cells: www.cellsalive.comSynthesize information and report orally to class | Construct a double bubble thinking map illustrating the differences between cellular respiration and photosynthesisExplain the differences in a multi-paragraph essayCompose a poem, play or Reader's Theater about photosynthesis, cellular respiration, cell division | | Standard B 2.2: Organic Molecules Carbon chains and rings Common elements Dehydration and hydrolysis | Demonstrate a carbon chain by connecting paper clips together into a straight chain, branched chain, and a ring simulating carbon chains and a carbon ringForm a sentence explaining each joining: "Carbon atoms join in | Construct a chart of the common organic molecules—C, H, N. O, P, S— include symbol, name, atomic mass, usefulness to man | Create a vocabulary book of terms including word, illustration, definition, sentence and symbol: molecule, carbon, element, organic, inorganic, carbohydrates, lipids, proteins, acids, etc. | Make an "Important Book" about the 4 major categories of organic molecules— carbohydrates, lipids, proteins, and nucleic acids—using the same patterned sentences as in the book by Margaret Wise Brown | Research dehydrationWrite a short essay on the benefits and pitfalls of dehydration to man | | High School—
Biology
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|--
--|---| | | chains and rings
to form large and
complex
molecules." | | | | | | Standard B2.3: Maintaining Environmental Stability Cell function Stable internal environment Disease agents | Discuss the word "stability"— demonstrate using a balance beam, or stable or unstable tableExplain that cells need a "stable" (homeostasis) environment in order to grow— ex: show what happens if a plant environment is too hot or too cold | List the physical conditions that cells need in order to function properly—include how the condition helps: Ex: pH (acidity), temperature, etc. | Read about acid rain—an instability in the environment that makes lakes and rivers too acidic to support life and can corrode stoneDraw a picture of the effects of acid precipitationWrite one sentence | Construct a T-chart with illustrations showing the differences between a stable or unstable environmentWrite a paragraph describing a stable environment for life | Research one organism or plant in Michigan that has become endangered because of environmental instability (water pollution) or disease agentsReport out to class | | Standard B2.4: Cell Specialization DNA Structural specializations | Sort pictures of living things (plants, animals, other organisms)Choose a picture and say a complete sentence to describe it.("This is an animal." | Build a 3- dimensional model of DNA (use beads, clay, pipe cleaners, etc.) Pairs of students can show complementary base pairingDiscuss—DNA is like because (ex: a recipe because it contains all the directions to build a body) | Pick three multicellular organisms—a plant, an animal, and a fish—create a chart of how each one gets energy, breathes, and removes waste—what cells perform these tasks?Show how these functions are basically the same | Draw a fish, a man, and a worm— orally describe what each uses to breatheWrite a 3 sentence summary stating that even though different organisms use different structural specializations (gills, lungs, membranes) they accomplish the same thing | Research one multicellular organism and orally report out how organism functions—how it gets energy, how it obtains oxygen, how it digests food, how it reproduces, etcCreate an illustrated leveled book using the information | | High School—
Biology
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|--|--|---| | Lipids Major systems and processes working together Energy transfer | Match cards: name, example, characteristic: Carbohydrate= energy or structure molecule =pasta Protein= contains nitrogen=eggs Lipid=does not dissolve in water= oil Nucleic acid= stores and transfers cell information=Practice repeating patterns of questions and answers with a partner. Q: "What are all living things composed of? A: "Living things are composed of" | Make a vocabulary chart for each word: Sentence Drawing Example Definition Word Use these words: Organelles, cells, tissues, organs, organ systems, and organisms | Discuss the differences between "transfer" and "transform"Illustrate and label energy transferred from the Sun and transformed into energy during photosynthesisWrite 3 sentences describing how energy is transferred and transformed using the correct words | Describe what happens when you eat an apple—breaking down energy-rich molecules to provide energy for cell functions | Create a song, rap, or poem about the composition of living things | | Standard B3:
Interdependence
of Living Systems
and the
Environment | | | | | | | Standard B3.1:
Photosynthesis
and Respiration | Listen attentively to a presentation about the | Make a diagram illustrating energy conversions | Create a double
bubble thinking
map of
photosynthesis and | Make a book illustrating the use of one plant by an animal, showing both | Research one living organism (plant, animal, etc. of choice) and how it | | High School—
Biology
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|---|--|--|--| | Direct and Indirect energy from the sun Reactants and Products of Photosynthesis and Respiration | differences between direct and indirect—give examples like talking on the phone vs. talking directly to someone; differences between respiration and perspirationMake a chart showing acquiring energy directly (sun to plant) and man eating a carrot (indirect from sun) | during photosynthesis and respirationWrite both equations for photosynthesis and cell respiration—have students notice the similarities and differences | cell respiration, showing differences and similarities, namely carbon dioxide and water converted into oxygen in photosynthesis and cells producing carbon dioxide and water in cell respiration | photosynthesis and cell respiration | uses photosynthesis and/or respiration to gain and use mass to thriveReport out findings to class through an visual-oral presentation | | Standard B3.2:
Ecosystems Energy Storage
Energy Transfer
Flow of Energy | Listen attentively to "Science through Song— Ecosystems" by Jim WalterLabel pictures with terms like storage, transfer, flow, food webs and orally identify each one with a sentence | Use AIMS materials and play a food web game, demonstrating what happens to the energy flow when one organism is removed | Construct a flow thinking map showing how energy is stored, transferred, lost as heat, etc. | Write a three paragraph essay describing the flow thinking map | Research one food chain that is part of a larger food web in Michigan (plants and animals)Illustrate and report out in a leveled book format | | High School—
Biology
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|---|---|--|---| | Standard B3.3: Element Recombination Producers, Consumers, and Decomposers and Trophic levels | Discuss the terms producer, consumer, decomposer—use illustrations and examplesSort pictures of living things into producers and consumers, and decomposers and say a sentence. ("This lion is a consumer.") | Find pictures from nature magazines or act out a scene depicting a producer, consumer, and a decomposer | Draw an energy pyramid showing how energy transfers to the next level and also shows the heat loss at every level Herbivores Plants | Write a description
of the energy
pyramid,
include
percentages of energy
transfer (about 10%)
and energy loss | Draw an energy pyramid of a Michigan food webreport out energy transfer and energy loss, both orally and in writing. | | Standard B3.4: Changes in Ecosystems Ecosystem Stability Survival through Cataclysmic changes in the Environment | Discuss how
human beings and
nature sometimes
upset
ecosystems:
forest fires, urban
expansion, floods,
etc.—what
happens? | View videos on ecosystems instability— earthquakes, fires, floods, etcWith a partner, take interactive Ecosystems 15 item quiz: www.pbs.org/eart honedge/quiz | Report out
interesting facts
from quiz | Read about cataclysmic changes to the environment – ancient (Ice Age) and more recent (Katrina or LA forest fires)Discuss how the environment recovered, organisms that survived and those that didn't | Research one negative human activity— overpopulation, deforestation, water pollution, trash, etcWrite one paragraph on its negative impactWrite one paragraph on how we can change that trend | | Population growth Influences on population growth Consequences of invading organisms | Count the
students in the
class and graph
population over 3
days | List the living things near the school—ex: trees, dogs, squirrels, etc. How do they interact with each other?List things that | Plot the population in Michigan over the last 10 years on a chartDiscuss the causes of the increase/ decrease | Research one Michigan animal or plant that has become endangered because of an invading organism—ash trees, wolverine, eagle, elm tree | Make a leveled
book about the
research project—
include illustrations,
causes,
consequences, and
solutions, if any | | High School—
Biology
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|--|---|--|--| | | | affect their population growth | in Michigan
population in the
last 2 years | Discuss what happened, causes, and changes to environment | | | Standard B4:
Genetics | | | | | | | Standard B4.1: Genetics and Inherited Traits Homologous Chromosome pair DNA molecule coding | Draw a family tree focusing on one characteristic: hair color, eye color; shape of hands or nose; expanse of arm lengthIllustrate and list distinguishing characteristics passed on. Say a sentence. ("My mother has brown hair, and I do, too." | Examine a three-dimensional model of DNADiscuss an example of codes (barcode) and how this is like genes are coded in DNA to transmit information to pass on from parents to offspring | Discuss, write
and illustrate
sentences using
these words:
DNA, genes, inherit,
chromosomes,
coding | Read about Gregor
Mendel and Barbara
McClintock and their
work in genetics and
heredity
Report out 3 facts
to class | Survey your own family for inherited traits—what traits are passed on in your family from 2-3 generations?Write an essay, including a chart of inherited traits traced back to family members | | Mutations Species DNA sequence Consequences of changes in DNA Radiation and Toxic Chemical exposure | Match the DNA sequence to the speciesDemonstrate DNA inherited mutations by a zipper—if correct zipper will function with ease—if teeth are "off" (mutation) then zipper (DNA) does not function properly. Say sentences like: | Build a model of DNA out of beads, pipe cleaners, etc., tell what each part represents and the function | In small groups, research one genetic disease— sickle cell anemia, Huntington's disease, Cystic Fibrosis, Hemophilia, Breast Cancer, etcinclude statistics on frequency, symptoms and effects, possible cures | Research toxic chemicals or radiation poisoningWith a partner, compose a 3 paragraph essay on the causes and effects. Include the latest research on treatment | reflective essay on a genetic disease from personal experience— interviews, local newspaper articles— include facts, personal anecdotes, and synthesis of researchReport out highlights to class in a visual presentation, poem, | | High School—
Biology
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|--|---|---| | | "This zipper is
broken. The DNA
sequence is
broken." | | | | personal narrative | | Standard B4.3: Cell Division— Mitosis and Meiosis Process of Cell Division Mutations Identifying Genetic defects | Act out mitosis and its phases and meiosis, noting the differencesUsing a script, say one sentence for what is happening at each phase | Illustrate mitosis and meiosis, labeling each phase and itemWrite phases on note cards with label of phase on reverse side, mix up and identify each phase | Make a
vocabulary book
of terms: include
an illustration,
sentence, definition,
symbol ofmitosis,
meiosis, cell,
mutation, genetics,
gametes, offspring,
gene, generation,
parents, etc. | Make a poster of a karyotype of cells—to identify genetic defects and explain poster to classRead about the process of making karyotypes and the benefits to mankind | Research stem
cells, the uses and
ethics of using them
to solve serious
medical conditions | | Standard B5
Evolution and
Biodiversity | | | | | | | Standard B5.1: Theory of Evolution Natural Selection | Listen attentively to a presentation of natural selection given with a visualView natural selection PowerPoint and repeat what is happening at each stage: click on "biology" then "natural selection— www.worldofteach ing.com | With a partner, select an animal of choice and replicate oral presentation on natural selection | Read informational books about the theory of evolution, and DarwinReport out information learned | Make summary boards on 4 major concepts of natural selection, including summary statement, illustrated example of each: 1. Overproduction: ex: deer population 2. Genetic variation: ex: longer legs on Arabian horse 3. Struggle to survive: ex: "survival of the fittest" 4. Differential reproduction—ex: Japanese macaques | Read about the Hundredth Monkey— Japanese macaques who learned to wash potatoes and thus survive betterResearch another animal that has thrived through time by adapting habits or physical characteristics | | High School—
Biology
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|--|--|---| | Standard B5.3: Natural Selection Population diversity Geographic isolation
Evolution and Diversity of Organisms | View a video
clip of the
Galapagos
Islands, listing
the variety of
animals and
plants | Make an evolution vocabulary book, including terms, illustrations, definition, and sentences: evolution, natural selection, population, geographic isolation, genetic mutation, diversity, environment, genetic variation | Read about genetic mutations in nature—a blue rose, albino tiger, mad cow disease, etcList questions— who, where, how, why, etc. | in a team, choose one genetic mutation example or genetic variety, research and answer questions generatedReport out to whole class, using newscast format | Research one Michigan type of tree, animal, plant, or fish listing population size, variety, evolution through 50 years, etcMake into a multimedia presentation using scientific terms— diversity, population, mutation genetic variety, etc. | ## High School Physics Essentials Michigan Science Linking Document to English Language Proficiency Levels | High School—
Physics
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|---|---|---| | Standard P1:
Inquiry,
Reflection, and
Social
Implications | | | | | | | Standard P1.1: Scientific Inquiry Questioning, Evaluating, Investigating, Identifying Patterns Describing Reasons | Draw
scientific
pictures and
label them (such
as atmosphere,
DNA,
photosynthesis,
evolution, etc.) | Conduct
scientific
investigations
using realia.
Following teacher
directions. | Generate list of questions about observationsUse question words such as who, what, when, where, why, what if | Maintain a science
journal | Maintain a
science journal with
explanations, and
label illustrations | | | With a partner, investigate an interesting science topic (ecosystems, genetics, DNA, evolution, etc.) and discuss | Chart
observations using
a T list | Explain T-list to
another team
investigating the
same question
Discuss findings
and combine into
one team chart | Write one
paragraph about
investigation findings | Research answers
to question using
books, internet,
experts and add to
writing | | Standard P1.2: Scientific Reflection and Social Implications Critiquing Identifying Personal and Social Issues Accessing Information Discussing Evaluating Careers in Science Fields | Construct a
thinking map or
DNA model
(photosynthesis
process, cell
growth and
development,
etc.) | Follow 3-4
step directions
and then restate
construction
directions for
another student to
follow | Develop "I
Wonder"
questions about
model ("I wonder if
we will discover
another kind of
energy.") | Read about
atmosphere, DNA,
photosynthesis,
evolution, etc.) | Create a book
about
photosynthesis, or
genetics and
investigate career
fields related to
them | | and Social Issues Accessing Information Discussing Evaluating Careers | | follow | energy.") | | them | | High School—
Physics
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|--|--|--|---| | Standard P2:
Motion of
Objects | | | | | | | Standard P2.1: Position—Time Speed of an object Motion diagrams Position-time graphs Rotation and Revolution | Experiment with racing toy cars of various sizes Calculate the average speed of each car | Create a chart of the car race including car, size, distance, time elapseOrally report out chart results | Make a vocabulary chart or book of terms— include term, illustration, definition, sentence: average, position, elapsed time, rotation, revolution, velocity | Make a double-bubble thinking map illustrating the difference between speed and velocity, and rotation and revolutionCreate a line graph showing plots for distance (position) on the vertical side and time taken (elapsed) on the horizontal—do this for every car | Present orally and in writing using a picture or globe, demonstrating the revolution and rotation of the EarthChart the rotational and revolution speeds of all the planets | | Variables: distance, displacement, speed, velocity, and acceleration Velocity-time graphs | View a video clip of a horse or car raceListen to and watch attentively a playback pointing to a picture of each term: distance, displacement, speed, velocity, and acceleration | Replicate oral presentation on terms using object or pictures demonstrating each term | In teams, create a velocity-time graph using calculations from toy car raceGive an oral presentation describing what happened with each car, using the graph | Experiment with circular motion— hamster wheel, motorcycle in a circular cage (toy or on video clip), marbles on the rim of a round plateOrally describe what is happening in plain terms and then in scientific terms— acceleration without a change of speed | In teams, create a song, poem, rap, or play using these terms: velocity, time, distance, speed, acceleration, elapsed, etcPresent orally to classmates | | High School—
Physics
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|--|--|---|--| | Standard P3:
Forces and
Motion | | | | | | | Standard P3.1: Basic Forces in Nature Interaction of objects | Demonstrate the difference between "direct" and "indirect" contact"—using objectsSort pictures of real things demonstrating direct or indirect contact (tug of war, gravity, etc.) | View video clips of forces of nature showing distant interaction (nuclear power, gravity, electromagnetism)State one sentence of what is happening | In teams, choose one contact sport and one non- contact sport and list the interaction of forces (ex: football and bowling)Orally explain the forces in relation to direct or distance contact | Read leveled books about forces in nature, mechanics (push-pulls, friction), etcWrite a paragraph about favorite book | In teams, write a script and act out a play about interaction of objects, demonstrating direct and indirect interactions | | Net Forces Magnitude of every day forces Calculate net force | Illustrate multiple meanings of these words: net, magnitude, direction, act | Write one
sentence using
the scientific
meaning of each
word | Experiment with various forces (tugof-war, tractor pull, sports, hand springs) in different situations (in mudor water, lots of friction to no friction)Present net force of 0 and explain why and present a net force of 5 and explain how calculated | In teams, choose one sport, list all the forces acting upon the object (bowlingpins, swimmingbody, hockey—puck, etc.)Create a poster that demonstrates net force and present orally to classmates | Research Newton's First Law of MotionMake a poster and orally present findings | | Standard P3.3: Newton's Third Law Action and Reaction force | Listen attentively to demonstrations or video clips showing action and reaction | Create a T
chart of actions-
reactions, using
pictures, every
day events, or
observations
 In partners, act
out charades of
every day events—
have other teams
guess what the
action is and name | Read about
Newton's laws
Write a paragraph
about interesting facts | In teams, create a
song, poem, rap,
or play about
Newton's Third Law | | High School—
Physics
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|--|--|---|---| | | (jumping off a boat and the boat moving back, dog wagging tail and tail wagging whole dog, etc.) State the action and reaction | Report out 3 events, stating what is happening, the action and then the reaction | the reaction (ex:
hitting a ball,
shooting a gun and
gun backfiring, etc.) | | | | Standard P3.4: Forces and Acceleration Changes in motion Solving problems Objects moving in uniform circular motion | Working in teams experiment with suspended steel marbles on wires gamehitting one ball into others, hitting 2 balls into others, etcReport out orally stating exactly what happened using sequence words such as first, second, next | Act out motion, acceleration, mass, force, velocity by loading a cart with weights in increments and predict change in speedUse this sentence frame: "I predict that the cart will move slower/faster because" | Predict which object will fall to the ground first—an apple or a watermelonWeigh both objects and solve problem using Newton's Second Law—F = m x aExperiment with other objects | Create a leveled book about Forces and Acceleration—illustrated or use pictures from magazines showing examples from real lifeWrite sentences explaining what is happening: Acceleration and motion, constant velocity, circular motion | Read about pollution and the size of carsWrite a report comparing two cars: their mass, engine size and fuel usage, including personal car choice and reasons why | | Standard P3.6: Gravitational Interactions Earth-Moon interaction Weight differences | Listen attentively to a presentation or video clip on orbiting (spaceship or moon orbiting the Earth) | Retell in scientific terms what is happening "The moon is orbiting around the Earth in a circular motion." "Centripetal force is the unbalanced force that causes the moon to in a | View the historical walk on the moonTalk about gravity on Earth and gravity on the moon—predict if you would weigh more on Earth or on the moon | In teams, make a
list of curiosity
questions about
gravity using starter
question words—Is,
Does, Who, When
Give questions to
another team to
answer | Research gravity
on various planets
Report out
findings in chart
form or a song or
rap—include
gravitational force,
distance, mass | | High School—
Physics
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|--|---|--|---| | | | circular path." | | | | | Standard P3.7: Electric Charges Variation of electric charges Static charge | Watch a demonstration of an electrically- charged comb that picks up confettiListen attentively and repeat words after teacher or classmate. Make flashcards with a self- designed sketch or picture: charge, force, gravity, electric, static, distance | Demonstrate other examples of static charge, and predict which will give the strongest charge—walking across a carpeted floor and touching a metal doorknob, clinging clothes out of a dryer, rubbing a glass rod with a silk cloth, pulling off cap | Act out oppositely charged objects attracting each other and like charged objects repelling each other. Vary distance to less attraction, more attractionIn teams, explain what is happening using scientific terms | Research Charles Coulomb (1736-1806) and write a paragraph about his contribution to science—Coulomb's Law | Create a poem or rap of Coulomb's Law and act outResearch the side effects of static electricity in high-technology labsReport out problems and solutions | | Standard P4:
Forms of Energy
and Energy
Transformation
s | | | | | | | Standard P4.1: Energy Transfer Energy transfer diagrams Everyday energy transfer activities | Cut out pictures from magazines showing energy useDescribe the energy in one or two words (radio, heat, light, microwave, etc.) | Demonstrate how a wave works (travels, things on the water bob up and down— transferring energy)Label the energy in terms of waves: radio waves, heat waves, | In teams,
explain orally how
one type of wave
transfers energy:
ocean wave, radio
wave, microwave,
sound wave, light
wave | Read leveled
books about energy
and energy transfer
from moving objects
and waves | Play charades and guess the energy transfer acted outMake an illustrated book about the different kinds of energy transfer | | High School—
Physics
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|---|--|---|---| | | | microwaves,
sound waves, light
waves, seismic
waves | | | | | Standard P4.2: Energy Transformation Representing energy transfer in complex processes Energy conservation Stored energy | List different kinds of energy transfers— sunlight into heat, radio waves into sound, etcIllustrate one kind of energy transfer, labeling origin, transfer wave or object, and result | View video clips of conservation of energyDiscuss how energy is transformed, but the total amount of energy never changes | Watch a demonstration of a radiometer that converts light energy into heat energy, then into kinetic energyRetell what is happening in own words | Watch a video of how a car engine works—how gasoline is combined with oxygen to convert to thermal energyDiscuss the thermal energy wasted and leaving through the radiator and exhaust pipe | Research energy efficiency in carsReport out on one energy conversion that is more efficient (aerodynamics, biodiesel fuel, etc.) | | Standard P4.3: Kinetic and Potential Energy Forms of energy Transformation between potential and kinetic energy Mechanical systems | Sort various pictures into categories of potential and kinetic energyWrite and say a sentence for each picture. | Label the pictures and write one sentence about each | Watch video clips or demonstrations of various mechanical systems—sky lift, roller coaster, grandfather clock, pencil sharpenerIn teams, discuss what is happening and explain the transformation between potential energy and kinetic energy in one example | Name the external energy source for the mechanical systems to maintain motionWrite one paragraph
describing the transformations of energy, the external energy to maintain the motion, and the end result | Give an oral presentation on kinetic and potential energy, using real objects, charts, scientific terms in contextCreate a quiz for classmates based on information in presentation | | Standard P4.4: Wave Characteristics Wavelength, amplitude, | Experiment with a slinky, rope, water to create different kinds of waves | Demonstrate
and describe in
one sentence the
length, height,
speed and | In teams, demonstrate traverse waves by shaking a slinky tied to a door up and | Make a T chart for
the characteristics of
transverse and
compression waves,
including an | Using everyday
objects (musical
instruments,
slinky), act out
traverse and | | High School—
Physics
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|--|--|--|--| | frequency, and speed Transverse and compression waves | | quickness of waves as wavelength, amplitude, and frequency: ex: "The larger the amplitude the more energy there is." | down—use these words: moving across, perpendicular, crest, and trough. "The transverse waves travel perpendicular to the right." Demonstrate compression waves by pushing the slinky back and forth—use these words: longitudinal, moving along, compression, rarefaction. "The longitudinal waves move parallel to the direction of energy transfer." | illustration, definition, and examples Transverse Compression | compression waves Create a song about waves using scientific terms | | Standard P4.5: Mechanical Wave Propagation Everyday examples Sound waves Vibrating waves Amplification | Experiment with different musical instruments— drum, violin, flute, guitarDiscover where the sound is coming from (vibrating string, skin, fluttering column)State: "The source of the sound is the vibrating" | State what happens to the fishing bobber when making a wave in a tub: "The bobber goes up and down but does not move forward. The bobber moves in a circular motion."Restate in scientific terms—"The bobber moves forward at the crest of each wave and moves | Participate in a demonstration with a tuning fork, standing at varying distances from the fork. Note the intensity of the soundState 3 findings from the experiment, using the words distance, intensity, decrease, increase | Read leveled books about soundReport out orally what you have learnedRank order common sounds according to decibel level (jet engine, lawn mower, auto horn, talking, purring cat, whisper, rocket engine) | Research classroom amplifying systems used in the classroomWrite a report on various kinds and how they help students learn better | | High School—
Physics
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|--|---|--|---| | | | backward at the trough." | | | | | Standard P4.6: Electromagnetic Waves Electromagnetic spectrum Radio waves Radio message delay See before we hear | Listen attentively to a presentation about radiant energy and electromagnetic waves. Draw a sketch or picture to represent something you understand based on viewing or observation. | Make a list of "I wonder" questions about electromagnetic waves | Construct an electromagnetic spectrum on a chart—label and arrange examples from decreasing wavelength to increasing frequencyState one sentence describing each example: "Radio waves have a long wavelength and low frequency." | Read about or view video clips about one kind of electromagnetic wave of your choiceWrite a paragraph about why you chose a particular kind and new information you found out | Visit a local radio station to find out about radio frequency levels usedCreate a chart showing the difference between light waves and sound waves—why we see lightening before we hear the thunder—use the words speed, wavelength, energy | | Standard P4.8: Wave Behavior— Reflection and Refraction Ray diagrams Reflected light paths | Experiment with different kinds of flashlights beaming light on different kinds of surfaces—cloth, wood, mirror, paper, etc.—What do you notice | Make a vocabulary chart for each word, including illustration, definition, sentence, word: reflection, refraction, surface, ray, transparent | Experiment with light and mirrors, prisms, spoons, glass, and magnifying lensesState in sentence form what you notice: ex: "I notice that the light goes through the glass, not the mirror." | In teams, construct a ray diagram step by step, following teacher's directions (use construction paper, pinhole, sun, penny)Recreate and restate process with a partnerConstruct a ray diagram on your own | Research interactive websites on reflection and refractionShare different websites with classmates and vote on best site | | Standard P4.9: Nature of Light Transparent objects in clear liquid Various materials reflecting, absorbing, or transmitting light | Act out or
show these
words: reflection,
transparent,
absorption,
transmission,
Sort words
according to | Sort materials by how light passes or does not pass through— transparent to solidState one sentence on each | Read leveled
books and take
notes on light
interacting with
matter | Synthesize information on light and report orally to classWrite a 3 paragraph essay on light | Survey students on why they think the sun appears red at sunrise and sunsetWrite a report on the real reason—include the words: | | High School—
Physics
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|---|---|--| | Image of the Sun at sunrise and sunset | endings: -tion,
sion
Match root words
and derivatives
ex:
absorb-absorption | materialex: "Glass <u>reflects</u> light." "Water <u>transmits</u> light." "Black paper <u>absorbs</u> light." | | | absorbs, higher and lower wavelengths, atmosphere | | Standard P4.10: Current Electricity— Circuits Electrical energy transformations Common household electrical devices Classification of circuits Voltage, resistance, and current | Experiment with building a circuit with a single battery, wire, and bulb. Which way lights the bulb?Write simple instructions with a partner to show steps of
construction using these sentences: "This is an open circuit/closed circuit." | Draw diagrams of open circuits, closed circuits, and short circuits—Match labels to correct circuitsState one sentence about each: "This is a circuit because" | Create a chart of household or school items that transform electricity into light, sound, heat, motion—use pictures or words Light: lamp Sound: radio Heat: toaster Motion: fan, vacuum | In teams, research one aspect of electricity in Michigan —where it comes from, uses, average household use, etcReport out findings to classmates | Write a report on electricity use in school or own home: voltage used, forms of energy used, amperage, etcReport out orally to classmates | | Standard P4.12: Nuclear Reactions Peaceful Technological applications of nuclear fission Exposure to prolonged radioactive decay Star energy | Ask classmates simple prepared survey about their opinions of nuclear powerListen attentively to a video clip or presentation on nuclear power plants. Draw something you saw in the video. | Use a bubble solution to simulate nuclear fusion (smaller bubbles merge into one big one) and fission (splitting of larger bubble into two smaller ones)State what happens in complete sentences | View video clips of nuclear power put to good usesTake notes and discuss learning in groupsCreate a group chart of learnings and report out to classmates | Research peaceful and war applications of nuclear energyDebate the advantages and disadvantages of using nuclear power (radiation therapy, radioactive waste) | Research the future of nuclear power—for cars, heating houses, etcIllustrate and write what life would be like using safe nuclear power (no pollution, lower heat bills, etc.) | ## High School Chemistry Essentials Michigan Science Linking Document to English Language Proficiency Levels | High School—
Chemistry
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|--|---|---|--| | Standard C1:
Inquiry,
Reflection, and
Social
Implications | | | | | | | Standard C1.1: Scientific Inquiry Questioning, Evaluating, Investigating, Identifying Patterns Describing Reasons | Draw
scientific
pictures and
label them (such
as atomic
structure, the
Periodic Table,
acids and bases,
etc.) | Conduct
scientific
investigations
using realia.
Following teacher
directions. | Generate list of questions about observationsUse question words such as who, what, when, where, why, what if | Maintain a science
journal | Maintain a
science journal with
explanations, and
label illustrations | | | With a partner, investigate an interesting science topic (Ions and Isotopes, Chemical bonds, Properties of substances, chemical changes, etc.). Choose a picture to label and describe with two sentences. | Chart
observations using
a T list | Explain T-list to
another team
investigating the
same question
Discuss findings
and combine into
one team chart | Write one paragraph about investigation findings | Research answers
to question using
books, internet,
experts and add to
writing | | Standard C1.2: Scientific Reflection and Social Implications Critiquing | Construct a
thinking map or
Periodic Table
model | Follow 3-4 step directions and then restate construction directions for another student to | Develop "I
Wonder"
questions about
model ("I wonder if
we will discover
another element for | Read about Atomic
structure, Chemical
bonds, the Periodic
Table, etc.) | Create an interactive chart of the Periodic Table—including history, element illustrations, uses, etc. and | | High School—
Chemistry
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|--|---|--| | Identifying Personal
and Social Issues
Accessing
Information
Discussing
Evaluating Careers
in Science Fields | | follow | the Periodic Table.") | | investigate career fields related to this | | Standard C2:
Forms of Energy | | | | | | | Standard C2.2: Molecules in Motion Conduction in solids, liquids, gases | Listen attentively to Science Through Song"Molecular Motion Dance" by Jim WaltersSing along with a copy of the lyrics | Create a vocabulary chart of words, including illustration, definition, example, sentence: conduction, transfer, energy, solid, liquid, gas | Restate "Molecular Motion Dance" in sentences to describe transfer of energyDemonstrate better conduction in solids and liquids than gases—ex: heating rocks, heating water, heating steam— which lasts longer?State in sentence form which one conducts heat better | Illustrate states of matter showing object, graph of molecules (solid—tightly packed molecules; liquid—loosely arranged; gas—far apart)Give an oral presentation on molecules in the states of matter | Research plasma as another state of matter—its structure, molecule arrangement, uses in every day lifeWrite a report on findings | | Standard C3:
Energy
Transfer and
Conservation | | | | | | | Standard C3.3:
Heating
Impacts | Experiment
with conducting | Experiment
with melting ice | Describe in scientific terms | Read books or view video clips | Create own
"Molecular Rap" | | High School—
Chemistry
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|---|--|--|--|---| | Heat conduction in
a solid
Melting | heat—put a spoon in hot soup Describe what happens to the handle of the spoon In one sentence | Describe what happens in plain EnglishRepeat teacher's scientific description of what is happening with the energy disrupting the hydrogen bonds of the water molecules to form liquid | other melting instances: melting cheese, chocolate, etc. | about how furnaces work to heatReport out findings | about heat conduction and melting | | Standard C3.4: Endothermic and Exothermic Reactions Chemical Reactions | Create a lab experiment demonstrating endothermic and exothermic reactions using 2 beakers of water and adding borax to one beaker and Epsom salts to the otherTell what happened to the temperature of the water in each | Make a double-bubble thinking map of endothermic and exothermic reactions, including the words release energy and absorb energyCreate a mnemonic to remember what each word means | Explain what happens in scientific terms when you burn charcoalwhat the reaction is and what happens to the energy | Research other chemical reactionsMake a chart listing different endothermic and exothermic reactionsReport out why each reaction is one kind and not the other | Interview a chemist as a career choiceWrite a report on benefits, education, career possibilities | | Standard C4:
Properties of
Matter | | | | | | | Standard C4.2: Nomenclature Compound names and formulas | Repeat names of compoundsAlphabetize compound names Ex: Carbon dioxide | Match formulas
to compounds
Ex: H ₂ 0 = water
Match common
name to scientific
name | Listen attentively to a presentation on prefixes and their meaning: Mono = 1; Di = 2 | Create a chart of compounds, their common name, formula scientific name and common uses | Create a game
for compounds similar to JeopardyPlay game with classmates to review compounds | | High School—
Chemistry
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|---|---|--|---| | | Nitrous Oxide
Sodium
chloride | Ex: water = dihydrogen monoxide | Tri = 3; Tetra = 4 etc. Practice matching number of atoms with correct prefix | | | | Standard C4.3: Properties of Substances Differences in physical and chemical properties | Using various substances, demonstrate solids, liquids, and gasses and make a sentence: Build a model using Legos for solids sticking together solid, definite shape, volume Pour juice into a containerliquid flows, constant volume, shape of its container Blow smoke into a jar and close the lid gas, flows, conforms container fills, volume | Draw a chart showing the different arrangement of particles of a solid, liquid, and gasUsing the chart, talk about the arrangement of the particles using these words: more ordered, orderly, regular, irregular, definite, not definite, volume, shape | Experiment with helium, cornstarch and water mixture, and various objectsReport out findings in terms of solids, liquids, gases | Read leveled books about the states of matter and their propertiesMake mini-leveled books about each, giving a real life example, illustrations, labels, and descriptive sentences | Create a rap
about the properties
of solids, liquids,
gases | | Standard C4.8: Atomic Structure Electrons, Protons, and Neutrons | Demonstrate the structure of an atom using a peach or plum— the pit represents the dense nucleus | Draw and label a diagram of an atomAssociate similar words with charges: | Create a 3-D
model of an atom
using everyday
items, showing
empty space
(electron cloud) | Demonstrate
strong force holding
together repelling
forces of protons by
putting 2 positive
sides of a battery | In teams, create
an Atomic
Structure quiz for
classmates using
information gained
about protons, | | High School—
Chemistry
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|--|--|--|---|---| | Description of an atom | and the fruit represents where the electrons moveWith a partner, make a list of the smallest things students think of: "An atom is a million times smaller than" | Protons = positive charge Neutrons = neutral or no charge | surrounding a dense center (nucleus)Give a presentation using scientific terms | together –state how the nucleus is kept intact by a strong forceRead leveled books about the discovery of atoms | neutrons, electrons,
nucleus, positive,
negative, neutral | | Standard C4.9: Periodic Table Using the Periodic Table | Place element cards in order of the periodic table—notice patternsVerify which category has more elements—metals, nonmetals, or metalloids | Match elements with their symbolsSay elements aloudUsing the periodic table, quiz each other with questions like: "Which element is more metallic—zinc or titanium? "Which is a liquid—mercury or iron?" | Group element cards by physical and then by chemical propertiesChoose 5 elements and state the atomic number, what the color represents, the chemical symbol, the element name, and atomic mass and what that means | Choose 10 elements and state practical uses: ex: Palladium is used for engagement rings. | Using the pattern
from the Important
Book by Margaret
Wise Brown, write
an Important Book
about 5 elements of
your choice including
uses, names,
chemical and
physical information | | Standard C4.10: Neutral Atoms, Ions, and Isotopes Number of protons, neutrons, and electrons in ions and isotopes | Listen attentively to a presentation about atoms, protons, electrons, ions and isotopesRetell definitions of each one, showing examples | Create a
vocabulary chart
of words,
including
illustration,
definition,
example,
sentence: neutral
atom, ion,
isotope, equal,
unequal | View pictures or video clips of real life ions (coral reefs)Experiment with different colored beads to represent electrons, neutrons, and protons of elements. Represent a neutral element, a positively charged ion (by taking away | Create a chart of elements, their atomic number, mass number, and examples possible ions and isotopes represented by the number of added or deleted electrons (ions), or added neutrons (isotopes)—use hydrogen, tin, | Research radioactive isotopes, as an example of unstable isotopesWrite a 3 paragraph essay on either the dangers or positive uses of radioactive isotopes | | High School—
Chemistry
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|---|--|---|---| | | | | an electron bead) and a negatively charged ion (by adding an electron bead). Represent isotopes by adding neutrons and making mass bigger | uranium,Present an oral report of chart to classmates | | | Standard C5:
Changes in
Matter | | | | | | | Standard C5.2: Chemical Changes Simple chemical equations Chemical and Physical Changes Atoms in Physical and Chemical changes | Collect pictures or examples of chemical changes in nature: copper turned green, soured milk, baked cake, fizzing tablets in water, etcDescribe what happens in each picture (The chemical change is | Create a vocabulary chart of words, including illustration, definition, example, sentence: chemical change, physical change, equation, product, conservation, reactant, coefficient, massCreate a chart of root words and suffixes— Root suffix React ant Conserve tion Equate tion Apply ing Relation ship | Make a double-bubble thinking map of chemical changes and physical changes—include number of atoms in the reactants and number of atoms in the products Ex: Physical= melting butter, freezing water, crushing a can, erosion of soil, shaping clay Chemical= copper turning green, bleached clothes, leaves turning color | Demonstrate balancing a chemical equation through pictures or objects 2H ₂ + O ₂ 2H ₂ O Orally explain process to classmates using another equation | Act out balancing equations and conservation of matter through a play | | Standard C5.4: | Experiment | View a film clip | In teams, graph | Experiment with | Research | | High School—
Chemistry
Essentials | Basic
ELP Level 1A | Basic
ELP
Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|---|---|---| | Phase Change/Diagra ms Comparing energy levels Temperature graphs | with Alka-selsor tablets dissolving one-quarter of a tablet in hot water and the same in cold water—record time to dissolveState what happened in sentences: "The reaction was faster in hot water than cold water. The temperature made a difference." | or experiment heating water and aluminumExplain orally what is happening, how long each takes to raise the temperature 10° | the time and temperature of icewater to melting through to boiling, using a thermometer and stop watch to measure. Orally state results in complete sentences: "At room temperature (66°) it takes 1 hour and 15 minutes for ice water to melt." | other items—butter, cheese, solid oil, etc. Compare times and temperatures and graphs. | aluminum and present a report about how aluminum is mined, refined, and used | | Standard C5.5: Chemical Bonds—Trends Ionic or Covalent Bonding Formula for binary compounds | Construct a concept map of chemical bonding—use these words: ionic bonds, ions, covalent bonds, electrop moleck metallic bonds | Match real examples to correct chemical bonds Ionic: sea shells, table salt, plaster of Paris Covalent: water, sugar, carbon dioxide, hydrogen State why using the words "transfer of electrons (ionic) or sharing of electrons (covalent) | Make a chart of elements and their root words: Element Root CI chlor- F fluor- Br brom- O ox- I iod- N nitr- Recite formula for binary compounds of main group elements: "First is the cation – the first element name and then the anion—the root of the second element | Practice writing and saying the formula with different elements: Crisscross the oxidation= the positive oxidation of the first element becomes the subscript of the second element and the negative oxidation of the second element becomes the subscript of the first element: Ex: iron oxide The positive oxidation of iron is +3, and the oxidation of oxide is -2, therefore, iron oxide is | Create a skit acting out the formula for binary compounds of different elements | | High School—
Chemistry
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |--|---|---|---|--|--| | | | | plus the suffix -ide. " ex: Fe ₂ O ₃ is iron oxide Nal is sodium iodide CaO is calcium oxide | Fe ₂ O ₃ | | | Formulas Acid-base neutralization Tests for acids and bases pH classifications Different lake beds and adverse effects of acid rain | Listen attentively to a presentation about acids and basesList properties of acids and basesMake a list of foods with a sour or tangy taste= acidsWrite and read aloud two sentences such as, "The lemon is sour. It is an acid." | Sort pictures or cards into acids or basesState: "This is an acid because" "This is a base because"List word forms: Acid—acids—acidic Base-bases-basic | Create a chart of acids and bases using symbols, pictures, and uses. Item acid/base use | Predict acidity or basicity of common household items and rank order: milk, pop, water, bottled water, laundry detergent, lemon juice, ketchup, ammonia, battery acid, vinegar, blood, milk of magnesia, oven cleanerExperiment with litmus paper to differentiate acids from bases, and level of ph | Research acid rain and how it affects the environmentWrite a report on Michigan lakes that have limestone beds and those with granite beds—limestone neutralizes the acid rain. | | Standard C5.8: Carbon Chemistry Structural formulas for carbon chains Isomers for simple hydrocarbons Polymers—proteins, starches, etc. | Construct a paper clip chain to represent a straight carbon chain, a branched paper clip chain to represent a carbon branched chain where a carbon atom bonds to three or more carbon atoms; a paper clip ring to | Chart common hydrocarbons with prefix, # of carbons, common name Prefix # name Meth- 1 methane Eth- 2 ethane Pro- 3 propane But- 4 butane Pent- 5 pentane | Add the drawing of the structural formula for each in the chart: Methane CH ₄ H H-C-H H H C+C-H H H CH ₃ CH ₃ CH ₂ CH ₃ | Read about various hydrocarbons in nature in leveled books—proteins, starches, methane, heptane, etcReport out findingsCompare the structural formula of heptane and isoheptane—isomers have the same formula but atoms are | Research Freon and 2-methyl propane and why the isomer replaced Freon in aerosol spraysResearch the "Crispy Noodle" polymer recently invented that captures carbon dioxide to help make hydro cars more fuel efficient | | High School—
Chemistry
Essentials | Basic
ELP Level 1A | Basic
ELP Level 1B | Low
Intermediate
ELP Level 2 | High
Intermediate
ELP Level 3 | Proficient
ELP Level 4 | |---|--|--|--|-------------------------------------|---| | | represent a chain of carbon atomsState one sentence about each—"This is a straight carbon chain." or "All the carbon atoms are connected in a line." | Hex- 6 hexane Hept- 7 heptane Oct- 8 octane Non- 9 nonane Dec- 10 decane Make a vocabulary chart of terms, including illustration, definition, example, sentence: starches, proteins, isomer, hydrocarbon, polymer | Name practical uses for these hydrocarbons in a sentence: "We can use propane to heat food." | arranged in a different way | Give an "environmentally friendly" presentation to classmates |